The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
In Greenland the human intake of mercury and cadmium from local diet is high. In an autopsy study, mercury and cadmium concentrations in humans has been analyzed. This study will make it possible to assess to what extent the high intake of mercury and cadmium is reflected in human tissue.
Polar bears are at the top of the arctic marine food chain. Owing to the high lipid content of their diet, polar bears appear particularly prone to bioaccumulate organochlorines. Polar bears from East Greenland and Svalbard have higher contaminant levels than polar bears elsewhere in the Arctic. Levels of PCBs in these areas might negatively affect reproduction and survival. So far more than 130 polar bear samples have been collected since 1999. These samples are being analysed for organochlorines and pathological effects.
The project includes analyses of PCBs, organochlorine pesticides, chlordanes and brominated flame retardants in seals, birds and fish from Greenland. The programme covers a period of five years to investigate temporal trends in the concentration levels of organic pollutants in Greenland.
The ZERO database contains all validated data from the Zackenberg Ecological Research Operations Basic Programmes (ClimateBasis, GeoBasis, BioBasis and MarinBasis). The purpose of the project is to run and update the database with new validated data after each succesfull field season. Data will be available for the public through the Zackenberg homepage linking to the NERI database. The yearly update is dependent on that each Basis programme delivers validated data in the proscribed format.
Organochlorines (OCs) concentrate through the arctic marine food webs and are stored in the adipose tissue due to their high lipophilic and persistent characteristics. The polar bears receive high doses of POPS through their diet and a controlled experimt was need to resolve effect on the immune system and effects on internal organs. Such a controlled experiment on sledge dogs as a replacement test organism for the polar bear was conducted from 2004-2006 to investigate dose-response effects.
The present study will establish a link between the mercury levels in the abiotic environment (e.g. historical records of mercury data in peat bogs, the ice sheet or marine sediments) with levels in carnivore species (polar bear, birds of prey). These results can be used in a model for predicting past and future development of the mercury loads in high trophic biota. This in turn will enable us to evaluate if changes in mercury levels in the atmosphere are reflected in species at higher trophic levels of the Arctic ecosystem. The project will expand the longevity and certainty of the biotic time series of mercury to about 150 years by analyzing museum samples of bird feathers and polar bear hair and teeth. The project is part of the project “Fate of mercury in the Arctic (FOMA)”.
The aim of the project is to describe and model mercury accumulation up the Arctic food chain. Based on existing knowledge from old projects and new measurements made on frozen tissue samples. This project will contribute to a better understanding of the fate of mercury in the Arctic.
The project studies the development through time of contaminants (heavy metals and organic pollutants) in animals in Greenland.
TransCat main goal is the creation of a Decision Support System (DSS) for optimal water management of transboundary catchments, in context of the implementation of the EU Water Framework Directive.
A millimeter wave radiometer is started operation at the Swedish Institute of Space Physics, Kiruna, Sweden. The location of the instrument (67.8 N, 20.4 E) allows continuous observation of the evolution of ozone and ozone related trace gases in the Arctic polar stratosphere. It is designed for measurements of thermal emission lines around 204 Ghz. At this frequency observations include of ozone, chlorine monoxide, nitrous oxide, and nitric acid.
The DOAS instrument consists of grating spectrometer covering the visible and near ultraviolet spectral region. Zenith-scattered sunlight is collected by simple one-lens telescopes and fed via optical fiber bundles into the spectrometers, where atmospheric absorption spectra are obtained. The instrument runs automatically. Total column densities of the stratospheric trace species ozone, NO2, BrO, and OClO are retrieved from the spectra using the DOAS algorithm. These are species that play a major role in ozone chemistry, either by themselves in ozone destruction (BrO) or as indicators of chlorine activation/deactivation (OClO). The chemistry and dynamics of ozone destruction is investigated, e.g. with respect to the location of the polar vortex during the winter. The instrument is also useful for detection of polar stratospheric clouds using the zenith-sky colour index method.
FT-IR spectrometers are capable to quantifiy the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC-22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS Selected research topics and activities: chemical ozone depletion by observation of key species (O3, ClONO2, HNO3, HCl, ..) details of the ozone formation process by isotopic studies in ozone profile retrieval to detect dynamical changes transport studies of chemical tracers and tropospheric pollutants satellite validation
FT-IR spectrometers are capable to quantifiy the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC-22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS Selected research topics and activities: chemical ozone depletion by observation of key species (O3, ClONO2, HNO3, HCl, ..) details of the ozone formation process by isotopic studies in ozone profile retrieval to detect dynamical changes transport studies of chemical tracers and tropospheric pollutants satellite validation
Objective: to collect climatology information on the seasonal and year-to-tear variability of stratospheric CFCs, water vapour and atmospheric electrical parameters.
Objectives 1. To develop the measurement technique further, providing more accurate measurements and extend the method to a larger number of trace species 2. To monitor the presence of CFC:s and other longlived anthropogenic tracers in the stratosphere 3. To use long-lived anthropogenic species as tracers of atmospheric motion, in particular for comparison with atmospheric models Reserarchers: Descartes is a joint research programme currently involving N.R.P Harris and J.A. Pyle, Centre for Atmospheric Science at the Department of Chemistry, University of Cambridge, U.K., and Hans Nilsson and Johan Arvelius, Swedish Institute of Space Physics, Kiruna, Sweden
The atmosphere carries a continuous electric current and , even during fair weather, there is a strong electrostatic electric field, up to 200 volts per meter, close to the ground. This electric current is thought to be due to the accumulated effect of thousands of thunderstorms, mostly in the tropical regions of the Earth. These storms feed a current from the ground up to the ionosphere, a highly conducting layer in the atmosphere which lies above about 70 km altitude. The current spreads out around the globe through this layer and returns to Earth through the atmosphere as the 'fair weather current' outside the thunderstorm areas. Objective: Investigation of the part of the Earths global electrical circuit: fair weather current and its interaction with geomagnetic phenomena, such as, for example, a magnetic substorms. We use the data of the air-earth current measured by a long wire antenna installed in Kiruna/Esrange, Sweden. In July 1999 we have installed a new portable antenna at a distance of about 30 km from the old one. This antenna has a length of nearly 50 m, and we are recording the near ground vertical current with a time resolution of 10 seconds. The data from both instruments will be analysed together - for comparison and possible separation of the meteorological effects.
Objective: to determine how solar activity influences temperatures, winds, electric currents and minor constituents and to allow possible anthropogenic influences to be determined. Uses primarily measurements by the ESRAD and EISCAT radars, plus ground-based and balloon-borne measurements of atmospheric electric fields and currents.
Radioactivity in the Arctic environment is a central topic within environmental pollution issues. Increased discharges of technetium-99 (99Tc) from the nuclear fuel reprocessing plant Sellafield to the Irish Sea has caused public concerns in Norway. This project (acronym “RADNOR”) includes model and monitoring assessments and improvements, assessment of current and novel abiotic and biotic dose parameters and dose calculations and use of realistic climatic background scenarios in order to assess corresponding consequences for transport of radioactive pollutants. RADNOR consists of three main components: part 1, the determination of levels and time series of 99Tc in benthic and pelagic food webs; part 2, containing working packages on improvements to the understanding of site-specific and time-dependent sediment-water interactions (KD), kinetics of accumulation (CF) and body distribution in marine organisms, including contaminated products for the alginate industry and part 3, dealing with model hindcasts and observations for spreading of 99Tc from the Sellafield nuclear reprocessing plant during the 1990s and improvement of the NRPA dose assessment box model. From the model outputs, doses to man and environment will be calculated resulting in a valuable database for use within environmental management and for decision makers.
The project primary goal is to relate among-year variation of tundra wader numbers and nesting success to breeding conditions on southeastern Taimyr.
A tropospheric lidar system with a Nd:YAG-Laser was installed at the Koldewey-Station in 1998. It operates at a laser wavelengths of 355, 532, and 1064 nm with detection at 532 nm polarised and depolarised, and at Raman wavelengths like 607nm (nitrogen). It records profiles of aerosol content, aerosol depolarisation and aerosol extinction. During polar night the profils reach from the ground up to the tropopause level, while during polar day background light reduces the altitude range. The main goal of the investigations is to determine the climate impact of arctic aerosol. Analysis of the climate impact will be performed by a high resolution regional model run at the Alfred Wegener Institute (HIRHAM). The lidar system is capable to obtain water vapour profiles in the troposphere. Water vapour profiles are crucial for the understanding of the formation of aerosols. The water vapour profiles are also used for the validation of profiles measured by the CHAMP satellite from 2001 onwards.