The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
In most animals, males play the active role in courtship and compete for mates, whereas females are discriminatory in their mate choice. As a result of this, males in many animals have evolved costly ornamental traits such as gaudy coloration and long tails. In some species, females are also ornamented, but the reasons for this are poorly known. So far, the focus of most studies have been on sexual selection acting on males, although, under some circumstances males are expected to be choosy and females competitive. Despite the large interest the field of sexual selection has received over the last decades there are still challenging areas which are not fully understood, for example, the function and evolution of secondary sexual ornaments, the evolution of mate preferences and the existence of sex-roles. The aim of this project is to test questions related to these areas. The project will not only focus on selection acting on males, but will also investigate sexual selection acting on females, i.e. male mate choice and female-female competition. The project combines field studies with laboratory experiments. The animals under study are some gobiid fishes with paternal care and conventional sex roles: the sand goby, Pomatoschistus minutus, the common goby, P. microps and the two-spotted goby, Gobiusculus flavescens. The project will, for example, investigate costs and benefits of mate choice, the function of both male and female sexual ornaments, and the plasticity of reproductive behaviour and sex-roles.
Comparative physiology on brown, red and green macroalgae, especially regulation of photosynthesis...
1. Meganyctiphanes norvegica is the most abundant krill species in the fjord, although small numbers of Thysanoessa raschii and T. inermis also occur there. The work is now concentrated on the daytime tolerance levels of light from above and hypoxic water below, in the deep part of the fjord. Nighttime vertical migration and reaction to pycnoclines and possible advection out of or into the fjord is also under investigation. (See also Bo Bergström and Maria Thomasson) 2. Samples of deep-sea epicarid isopods indicate that this taxon is much better represented in the deep sea than previously anticipated. Taxonomy and zoogeography has been partly worked up, but the project is presently resting. My interest also covers deep sea asellot isopods. 3. Most often it is difficult to distinguish between fluctuations in biomass, abundance or changes in species composition in marine ecosystems caused by natural events and those caused by human activities. Indications are clear that the macrobenthos on the Swedish west coast is affected by both large-scale climatic factors and direct anthropogenic impact. This project will soon start in co-operation with Björn Tunberg, Andrea Belgrano, Odd Lindahl and Jacob Hagberg. My involvement in the IGBP/SCOR/IOC project on the Global Ecosystem Dynamics (GLOBEC) relates now in particular to the Southern Ocean where krill is a very important component in the trophic system. My present involvement is in the planning of international research activities through the GLOBEC Working Group on the Southern Ocean.
Dinophysis spp and the Koljö fjord. It has been known since some years that blue mussels in the fjord system north of Orust very seldom or never contains the diarrhetic shellfish toxin (DST) at the same time as toxic mussels can be found at the mouth areas of the fjord system. Our research has shown that the causative organism, the dinoflagellate Dinophysis spp, generally do not occur in the fjords while high abundance’s were found outside the mouth, although there is a tidal exchange and a net current flowing through the fjord system. Field and laboratory experiments have so far demonstrated that growth and survival of Dinophysis is less in the Koljö fjord compared to controls. We are for the moment looking at what factors may control these processes. This is part of the Ph.D. work by Fredrik Norén within the MISTRA project "Recycling of nutrients from sea to land using mussel culture".(http://www.mistra-research.se) Molecular identification of Dinophysis spp. Dr Ann-Sofi Rehnstam-Holm, after a postdoctoral position at the Woods Hole Oceanographic Institution (USA) will start working at Göteborg University and at Kristineberg on a MISTRA-project concerning new detection methods for Dinophysis. These methods consists in species specific identification by molecular probes and by a sophisticated signal amplification system, they are ready to be tested in the field at Kristineberg in co-operation with the MISTRA(http://www.mistra-research.se) project "Recycling of nutrients from sea to land using mussel culture". Production of DST by Dinophysis spp. Our experience since several years is that the Dinophysis species do not always contain DST. Recently a database containing all observations on phytoplankton from 1989 and onwards from the Gullmar fjord area was completed. This database will now be run against other databases containing environmental data, since it is known that the toxin production of many dinoflagellates may depend on nutrient stress. Together with professor Edna Granéli (http://www.hik.se) we are also planning laboratory experiments which hopefully will increase the knowledge about toxin production of Dinophysis. Uptake and fate of pathogenic microbes in the blue mussel, Mytilus edulis Linneaeus. The aim of this research project, which also is part of the M.D. work of Bodil Hernroth (BSc.), will contribute to increase the knowledge of how mussels process pathogenic bacteria and viruses, to try to predict which microbes may reach humans when consuming mussels. Comparative and quantitative studies of endocytos, anti-microbial activity, exocytos and elimination of pathogenic microbes by the mussels will be carried out. This project is a part of the MISTRA (http://www.mistra-research.se) project "Recycling of nutrients from sea to land using mussel culture" in close co-operation with Prof. Lars Edebo (M.D. supervisor) at the Institute of Laboratory Medicine at Gothenburg University (http://www.medfak.gu.se). Time-series analysis of pelagic data in the Gullmar fjord. Dr Andrea Belgrano (ecosystems ecologist), has a two-year individual postdoctoral fellowship position at Kristineberg funded by the European Commission (EC) within the Marine Science and Technology Programme (MAST III), is now working with advanced time-serie analysis on the project : " Plankton Community Dynamics in Relation to Water Exchange: The Gullmar Fjord Time Series Data Set- EC-MAST III - individual postdoctoral fellowship Research Project (MAS3-CT96-5028). (http://www.ecology.su.se/databases/biomad/lajos/pm32.htm). For the analysis of the time series data set co-operation have been established with Prof. Björn Malmgren, Göteborg University ( http://www.gmf.gu.se/Departments/MarineGeology.html), Dr. Andrew R. Solow , Woods Hole Oceanographic Institution (http://www.whoi.edu/mpcweb/), Dr. Mercedes Pascual, University of Maryland (http://www.umbi.umd.edu/~comb/index.html) and Dr. Peter Turchin, University of Connecticut (http://www.eeb.uconn.edu/) The exchange of deep-water of the Gullmar fjord. The hydrography and oxygen situation of the deep water of the Gullmar fjord has been monitored monthly for 20 years within different research and monitoring programmes. The ongoing analysis of this time-series will focus on the detection of trends and periodicity in the observed oxygen fluctuations, as well as on the changes in the timing and extent of the annual exchanges of the deep-water. The data analysis will benefit from the established co-operation with physical oceanographer at the Oceanographic Institution at Gothenburg University. Modelling of onshore and offshore marine populations. We are partner in a collaborative Virtual University Education Programme(http://www.umbi.umd.edu/virtue/index.html) established between Gothenburg University, and the University of Maryland (USA) in relation to the project " The temporal dynamics of vibrios in aquatic environments ". The objective of this project will focus on a better understanding of the dynamics of the bacterium Vibrio cholerae in aquatic ecosystems in relation to climatic and environmental forcing, as well as the role played by plankton as a potential reservoir for Vibrio cholerae outbreaks. This project will run for three years (1998-2000) and will involve a co-operation on new methods for the analysis of time series data and plankton dynamics between Dr. Mercedes Pascual and Dr.Anwar Huq at the Center of Marine Biotechnology, University of Maryland, Baltimore,U.S.A (http://www.umbi.umd.edu/~comb/index.html), Dr. Andrea Belgrano and Dr. Odd Lindahl at Kristineberg Marine Research Station (KMF) and Prof. Björn Malmgren at the Department of Earth Sciences - Marine Geology, Earth Sciences Center, Göteborg University (http://www.gmf.gu.se/Departments/MarineGeology.html)
The research encompass many various aspects of benthic infaunal processes: effects of faunal bioturbation and irrigation activity in differnet faunal successional stages on sediment chemistry; trapping and transformation of organic matter by different functional groups population interspecific competition effects of oxygen deficiency on benthic habitat succession and infaunal behaviour analysed by in situ sediment profile imaging and in laboratory experimets the importance of infaunal activity and food quality on the fate of organic contaminants chemical communication in amphiurid (brittle-star) populations.
1. Behaviour of individual copepods in the laboratory when exposed to patchiness of food and varying predation risk Copepods experience a variable food environment with favourable patches interspersed with large volumes of water with too low food concentration to sustain growth and development. Critical traits in copepod behaviour are therefore the ability to detect and remain in patches of food, and at the same time avoid predation. The objectives of the project are to quantify patch responses of selected small copepods and to observe how predator presence may affect foraging behaviour. Methods include video observations in small aquaria and bottle incubations with defined patches of food. Laboratory experiments showed that copepods have the ability to find and remain in food patches and that this was beneficial for them in terms of reproduction. Predation enhanced the advantage to stay in patches since increased predation risk was associated with food search. 2. Distributions of copepods and microzooplankton in the field The vertical distribution of copepods and their prey potentially has a strong impact on predator-prey interactions in the pelagic environment. The project aims at quantifying the small-scale (metre) distributions of these organisms. Since plankton nets are unsatisfactory at this resolution, an in situ video camera designed to observe copepods has been developed. The observations with the camera are amazing, a hitherto unknown world can be revealed. Results from filming with the camera shows that copepods sometimes aggregated around the pycnocline, but rarely respond to in situ fluorescence, a crude measure of food abundance. The distribution will be a balance between the swimming capabilities of the copepods and the turbulence field. At present, models have been developed that predict the distributions, and the project is in a field testing phase. 3. Distribution of marine snow in the field and association to grazing dinoflagellates The particle dynamics during blooms of phytoplankton has received considerable attention recently. It has been shown that physics will have a profound impact on the fate of phytoplankton blooms and this project aims at clarifying the combined role of physics and biology on the decline of phytoplankton blooms. In two field studies, simple coagulation theory has been successful in predicting bloom dynamics. In the Gullmarfjord, Sweden, a spring bloom ended rapidly following a storm event and mass sedimentation of marine snow was observed by in situ video recordings. Grazing by heterotrophic dinoflagellates prevented further recovery of the diatoms. In a second field study in the Benguela upwelling region, South Africa, continuous aggregation of large diatoms was observed. No sedimentation occurred, however, and the reason was found to be colonisation and grazing on the aggregates by the dinoflagellate Noctiluca scintillans. 4. Hunger responses in copepods exposed to variable food supply Food patchiness and the necessity to avoid predators means that copepods will have highly variable access to food. The aim of this project is to study dynamics of ingestion under non-steady state food conditions. Small copepods that do not store lipids have a limited capacity to survive periods of low food and should be adapted to fast and efficient utilisation of ephemeral food patches. The experimental protocol includes traditional bottle incubations with copepods and diatoms, high abundances and small bottles are used to detect fast changes (min-hours). The results show that brief periods of starvation (1-3 h) stimulated ingestion, but only temporarily on time scales of gut filling times. In contrast, longer starvation times (6-14 h) lead to elevated ingestion rates lasting longer than gut filling time. This could indicate changes in the assimilation efficiency and experiments are planned on the topic for January 1999.
This project aims to reveal more understanding in the species diversity and distribution of cryptic shrimps in coral reefs. Since these shrimps associate with other invertebrates to find food and shelter, they are often species specific in their choice of host organism. This is an important limiting factor in their distribution that is studied. Also the some 'species complex' found among shrimps inhabiting sea anemones are studied if they are separate species or not, using both taxonomical and ecological data! The impact of habitat diversity on the speciation of these associated shrimps is also studied. -------------------------------------------------------------------------------- Areas studied: The taxonomy and ecology of the shrimp fauna in three geographically different areas of the Indian Ocean - Inhaca Island, Moçambique, Phuket Island, Thailand and the coast of Western Australia.
Effects on marine organisms of sediments contaminated with tributyltin with special reference to sub-arctic and arctic conditions The use of antifouling paints based on tributyl tin (TBT) is now restricted in most European countries. However, the prohibition involves only vessels less than 25 m length. As a result many coastal areas and harbours show raised levels of TBT in water and sediment, high enough to cause effects on sensitive organisms. Dredging operations in such areas may increase exposure of organisms to TBT. As the degradation processes are temperature dependent contamination by TBT in arctic or sub-arctic waters may be more serious. The specific objectives of this study, which is performed in co-operation with the University of Iceland (Prof. J. Svavarsson), are to evaluate a/ the effect of temperature on the uptake of TBT by the gastropod Buccinum undatum during exposure to TBT-contaminated sediment and b/ the effects of contaminated sediment on the development of imposex (penis and vas deferens development of females) at different temperatures.The project involves both laboratory experiments and field studies. The project started in late autumn 1995 and results are not yet available. Effects of TBT- and triazine/copper based antifouling paints on the early development of cod Elevated amounts of components from antifouling paints has been found in sediment and in organisms in Icelandic coastal waters. Also imposex in dogwhelks and whelks has been observed. In order to evaluate any impact on the economically important fishery and especially focused on cod, experiments are performed in the laboratory following the early development of the fish from fertilization up to hatching when exposed to antifouling components. No results are yet available. Effects of antifouling agents in the marine environment. Early development in lumpsucker (Cyclopterus lumpus) preliminary studies. The objectives of the study are to reveal the effects of chemicals from antifouling paints on the development of the lumpsucker (Cyclopterus lumpus) - in situ and under laboratory conditions. The study focuses on TBT (tributyltin) and a chemical, Sea-nine, replacing TBT as the major toxic agent. We will evaluate the effects of TBT in the laboratory and under field conditions, but Sea-Nine under laboratory conditions only. Laboratory studies are based on the use of flowthrough conditions with different concentrations, while in the field studies we use cages with eggs and larvae. The eggs of the lumpsucker are allowed to glue to glass slides following fertilization. These are then easily transferred to either laboratory set up or into small cages, which will be set out at different distances from harbours. Also semipermeable membrane devices (SPMD:s) will be used in order to determine the actual water concentrations. The effects of TBT from the harbours is evaluated by measuring imposex in gastropods (Nucella lapillus) at the coastline. The mortality of the eggs and the larvae is determined and different physiological measurements are made in order to detect sublethal effects of the contaminants in question. The project has just started and no results are yet available.
This project is a part of a long term study of an ophiuroid species used as a model to monitor finctional recovery of newly formed arms.
The project aims to examine the effects of latitudinal temperature change on muscle function in amphipod crustaceans. As temperature has a profound effect on the ability of muscles to contract and produce force/power for movement, we are interested to see if there is any compensation for the effects of temperature between amphipod populations living at different latitudes. To this end we are studying Gammarid amphipod species due to their wide geographical distribution along the coast of North West Europe from temperate conditions in the Northern Atlantic (at approx 15°C in the summer) to polar conditions in the Arctic (at -1°C in the summer). In particular we are interested in the effects of temperature gradients on heavy chain myosin genes, as these genes regulate critical aspects of muscle contraction and can be influenced by changes in environmental temperature by switching from one gene variant to another. During our visit to Ny-Ålesund we hope to collect at least 3 different species of gammarid amphipod, including Gammarus locusta, G. zaddachi, and G. oceanicus to represent populations from the northerly limit of their latitudinal range. The muscle tissue will then be examined for sequence variations in specific active regions of the myosin genes that are known to influence the production of force. Sequence variation will be compared to the data collected from populations in the UK and in Tromso, Norway (70N). Ultimately the results will be correlated to the genetic diversity of the amphipod populations to assess the evolution of myosin genes in animals with a wide distribution pattern and inherent adaptability to temperature change.
Laboratory studies have demonstrated that M. edulis close its shell and stops pumping when the algal concentration becomes below 1500 cells cm-3 of Phaeodactylum tricornutum equivalent to 1 mg Chl-a m-3 (riisgård and Randlov, 1981; Riisgårs , 1991).
We investigated the reproductive and feeding biology of the commensal Symbion pandora (Cycliophora).
In order to improve and calibrate each elementary model an the global bioturbation model, data from laboratory experiments involving different more or less complex nacrobentihic communities (represented by different bioturbation functional groups) are nedded.
In previous studies undertaken at KMRS we have been investigating the link between regeneration and the functional recovery of bioluminescence in the arms of Amphiura filiformis.
Diversity of cyanobacteria and eukaryotic microalgae in subglacial soil (Ny-Ålesund, Svalbard) Study of the reinvasion and establishment of plant and animal life after ice retreat is one on the most important ecological problems. In the past, many Arctic and Antarctic research projects have dealt with primary succession processes and the effects of climate warming. Cyanobacteria and algae are widespread in polar wetlands and soils and produce visible biomass, which represents a considerable global pool of fixed carbon. Together with associated microorganisms, they are involved in energy flow, mineral cycling, weathering processes and the biological development of the polar landscape. The processes primary succession by cyanobacteria and algae are influenced by many ecological factors. However, two of them (1) aerobiological and water inputs of viable cells and spores into deglacaited areas and, (2) ability to endure freeze-dry desiccation for long periods of time (perennial character) play a detrimental role in the processes of primary succession. The diversity and abundance of cyanobacteria and eukaryotic microalgae will be studied in the vicinity of Ny-Ålesund, Southern part of Kongsfjorden, Spitsbergen, 79°N in the following habitats: subglacial soil (samples will be collected from below glacier ice) freshly deglaciated soil (close to glacial margins - up to 50m) glacial ice surface (cryoconite, streams flowing on ice surface, etc.) soils of habitats deglaciated many years ago (more than 50 years ago) The collection of these samples will be focussed on soils that have not been in contact with environment above the ice.
Prof. I.D. Hodkinson Dr. S.J. Coulson School of Biological & Earth Sciences, Liverpool John Moores University, Byrom St., Liverpool L3 3AF, UK (Contact details: Tel. 0151 2312030 Fax. 0151 207 3224 email i.d.hodkinson@livjm.ac.uk; s.j.coulson@livjm.ac.uk) Prof. N.R. Webb NERC Centre for Ecology & Hydrology, Winfrith Technology Centre, Dorchester, Dorset, DT2 8ZD, (Contact details: email nrw@ceh.ac.uk) Objectives and Hypotheses Our main objectives are to: describe, measure and model patterns and rates of invertebrate community development and succession following glacial retreat in the high Arctic using known chronosequences. cross-relate rates of community change to known climatic shifts. relate invertebrate community development to rates of key ecological processes such as decomposition of organic matter. evaluate the potential for more southerly species successfully to invade existing Arctic invertebrate communities. develop descriptive and predictive models of community development under conditions of climatic amelioration. We are testing the following hypotheses: that dispersal of particular functional groups of invertebrates in response to climate warming is a rate-limiting factor for invertebrate succession and community development in the high Arctic. that invertebrate community development in response to climatic warming is deterministic and directional, and therefore predictable. that the magnitude and stability of key ecosystem processes, such as decomposition, in the high Arctic are linked to biotic complexity, which can be suitably characterised by the invertebrate community composition. that natural succession provides a useful model for predicting rates of invasion by colonising species following climatic amelioration. Study sites Studies on two contrasting but complementary chronosequences on west Spitsbergen commenced in June 2000, an oligotrophic succession on t he glacial foreland of Midtre Lovénbre and a relatively eutrophic succession on Lovénøyene, a series of islands in Kongsfjord. A 1.5 km transect was established, extending from the foot of the Midtre Lovénbre to the terminal moraines and across the sandur. Seven equally spaced sampling sites (approx 20 x 40 m) were established at right angles to the main transect line). Each site was chosen to represent the most mature vegetation type present at each point. By contrast, each Lovénøy was viewed as a separate sample site. The chronology of glacial 'retreat' was established from vertical and oblique aerial and ground based photographs held by the Norsk Polarinstitutt Archive, Tromsø, from historical records and ground photographs and, for the oldest site, by radiocarbon dating of the soil. Results Ages of sites: The ages of the sites from the Midtre Lovénbre sequence vary between 2 years (site one) to 1900 (site seven), while the islands vary between 100 (Leirholmen) to 1800 (Storholmen). Plant community description and soil formation A detailed description has been made in the changes in the plant community (18 taxa) from site 1-7 on the Lovénbre - from unconsolidated parent to almost 100% ground cover. The presence, abundance and dynamics of each species have been described. Species have been characterised as early, mid or late successional. Parallel trends occur in soil characteristics including increasing depth, increasing organic matter and water content, decreasing clast size and a lowering of pH. Animal community description The soil fauna comprise primarily Collembola, mites, Enchytraeidae and chironomid larvae. Herbivores (one aphid and sawfly larvae) are few but hymenopteran parasitoids and predators (spiders and gamasid mites) are abundant. The distribution patterns of species and their abundances have been quantified for both the Lovénbre and Lovénøyene chronosequnces. The very first colonisers of bare moraines are Linyphiid spider species (predators). Other early soil colonisers are generally the surface active species such as the collembolan Isotoma anglicana. The poorest colonisers are the deep soil dwelling species. Experiments are thus underway examining wind blown dispersal and survival on seawater. A cellular automaton model, using absolute density and pitfall trap is being used to simulate diffusion dispersal of soil animals. A set of unusual weather conditions in late July produced a mass immigration of a small moth Plutella xylostella into Svalbard. This chance event has allowed us to track in detail the movement of associated weather systems and to reconstruct the direction and source of immigrants. Such events are rare but may become increasingly frequent as climate changes, opening a closed gateway for animals from further south to move into the Arctic. Continuing work Current visit (late July/early August) is aimed at collecting supporting information on the plant cover and microhabitat characteristics for manuscripts in preparation.
The main objective of the project was to investigate yje reproductive dynamics of the two-spotted goby, a small semi-pelagic fish abundant along rocky shores of Northern Europe.
To measure overall densities of overwintering copepods from Gullmarsfjorden in order to understand the role of lipids in their vertical distribution and buoyancy.
In secretory cells of the vertebrate floor plate and subcommissural organ are descendant of an ontogenetically ancient type of radial glial cells.
The main objective of the project were to collect and process various different populations of selected benthic species to determine, in combination with existing research, the following: