The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
Denmark has obligations according to the agreements in the Montreal Protocol, ie. for the monitoring of the ozone layer. This project is a fullfilment of these obligations, and the work is being supported by the Danish Environment Protection Agency (Danish EPA) through a DANCEA funding. Recommandations for the monitoring are updated every 3rd year via the Ozone Research Managers (ORM) Meeting at WMO in Geneva. The most recent meeting was in 2017. The monitoring program was initiated in 2002. The current partnership consists of Latmos (FR), NASA (US) and DMI (DK). Monitoring of the ozone layer and measurement of the UV radiation currently takes place in 2 locations in Greenland: Kangerlussuaq and Ittoqqortoormiit. In Kangerlussuaq the instrumentation consists of a Brewer spectrometer capable of measuring the ozone column and doing UVB scans, a SAOZ spectrometer measuring ozone and NO2, and an Aeronet Sun Photometer (hosted for NASA). In Ittoqqortoormiit the instrumentation consists of an ozone balloon borne sounding station, a SAOZ spectrometer (hosted for Latmos), a GUV 2511 broadband instrument and an Aeronet Sun Photometer (hosted for NASA). Retrieved data is uploaded to international databases (WOUDC, NDACC & NILU). Retrieved data is used to correct satellite measurements and to monitor the state of the ozone layer.
The objective of the station is to facilitate ecosystem research in the High Arctic. According to the framework programme of Zackenberg Ecological Research Operations (ZERO) this includes: - Basic quantitative documentation of ecosystem structure and processes; - Baseline studies of intrinsic short-term and long-term variations in ecosystem functions; - Retrospective analyses of organic and inorganic material to detect past ecosystem changes; - Experimental studies enabling predictions of ecosystem responses to Global Change. The programme is coordinated with Nuuk Ecological Research Operations (see below) within the Framework of Greenland Ecosystem Monitoring (GEM). Main gaps: Winter dynamics
The objective is to allow comparative studies of ecosystem dynamics in relation to climate variability and change in respectively a high arctic and low arctic setting as Nuuk Basic comprises the same components as Zackenberg. According to the framework programme of Zackenberg Ecological Research Operations (ZERO) this includes: - Basic quantitative documentation of ecosystem structure and processes; - Baseline studies of intrinsic short-term and long-term variations in ecosystem functions; - Retrospective analyses of organic and inorganic material to detect past ecosystem changes; - Experimental studies enabling predictions of ecosystem responses to Global Change. The programme is coordinated with Zackenberg Ecological Research Operations (see above) within the Framework of Greenland Ecosystem Monitoring (GEM). Main gaps: Winter dynamics
The GeoBasis programme collects data describing the physical and geomorphological environment in Zackenberg, North East Greenland. This includes meteorology, carbon flux and energy exchange, snow cover and permafrost, soil moisture, –chemistry and nutrient balance, hydrology, river discharge and – sediment
The objective of the project is to identify compounds in Arctic environmental and human samples, which have not previously been studied in the Arctic. By using both high performance liquid chromatography (HPLC) or gas chromatography (GC) HPLC and GC techniques, a broad spectrum of compounds of different polarity will be covered, including metabolites
MOSJ (Environmental Monitoring of Svalbard and Jan Mayen) is an environmental monitoring system and part of the Government’s environmental monitoring in Norway. An important function is to provide a basis for seeing whether the political targets set for the development of the environment in the North are being attained
1. Monitor transport of oil and hazardous substances from all sources into Norwegian coastal and oceanic waters through modelling, calculations and measurements. 2. Monitor contaminant status in selected indicators (biota, sediments, water, air, acidification). 3. Collect samples for the Norwegian Environmental Sample Bank. 4. Supply data for the Norwegian Integrated Management Plans The programme is operated by Norwegian Institute for Water Research (NIVA) on behalf of NPCA in cooperation with Norwegian Institute of Air Research (NILU), Norwegian Institute of Marine Research (IMR), The National Institute of Nutrition and Seafood Research (NIFES) and Norwegian Radiation Protection Authority (NRPA). - Locations: Norwegian marine waters (see attached map). Main gaps: New stations/indicators/parameters will be included when needed in the integrated management plans
Measurements of gamma-radiation in the environment (from ground to cosmos). Radioactivity in Intensive Net is measured on the soil surface at 28 sites in Sweden. The measurements are continuous and sound the alarm if radioactivity increases. Measured is the dose rate of gamma radiation. Radioactivity in Extensive Net is concerned all municipalities in Sweden which has got one instrument for gamma radiation measurement and each county board has got two. Every seventh month they measure radioactivity at two to four predefined spots as reference measurement. Radioactivity in Air is conducted at five stations with air filter sampling and analysis of radioactivity maintained by Swedish Defence Research Agency (FOI). Out of these stations Umeå and Kiruna are located in northern Sweden.
National Monitoring Programme in Sweden. The purpose is to quantify deposition (mainly of sulphur and nitrogen), and to illustrate effects in the soil, for example possible acidification. The aim of the network is to describe the current situation, regional differences, trends over time, and the effects of acid deposition. The atmospheric deposition of sulphur and nitrogen are the main causes of current acidification of ecosystems. Acidification results in substantial pH reduction in soil, groundwater, lakes and water courses. Deposition is investigated as precipitation studies in open field areas (bulk precipitation) and by throughfall studies in nearby forest stands. For sulphur and chloride, throughfall monitoring is useful for determination of total deposition. In areas, or during periods with low sulphur deposition, internal circulation in vegetation might influence results from throughfall measurements significantly. For nitrogen and base cations (mainly potassium and manganese) canopy interaction is important. Air concentrations of sulphur and nitrogen dioxide, ammonia, and ozone are measured at some locations. The observations made are: (i) air chemistry (SO2, NO2, NH3, O3); (ii) soil water chemistry (pH, Alk, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K, Mn, Fe, ooAl, oAl, Al-tot, total organic carbon); (iii) deposition in open field (precipitation, H+, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K, Mn); (iv) deposition in forest (throughfall, H+, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K, Mn). For nitrogen and base cations (mainly potassium and manganese) canopy interaction is important. Soil solution chemistry in the forest stands is used as indicator of soil conditions.
The aim of this project is to measure the airborne deposition of acidifying and eutrophicating compounds (gaseous and particulate reduced and oxidised nitrogen and sulphur compounds) in air and precipitation over Sweden at high altitude. The results from this programme is used to calculate and model basic processes governing sources, atmospheric transport and sinks of atmospheric trace constituents. The observations are made at three stations. The measurements include particulate reduced and oxidised nitrogen and sulphur compounds in gaseous and particulate form in air and precipitation.
This project is now part of the project: Acidifying and Eutrophifying Substances in Air and Precipitation
National Environmental Monitoring Programme. National Environmental Monitoring Programme. The PMK Network is part of the national network for deposition measurements. The aim is (i) a long-term monitoring of concentration and deposition of selected air transported compounds caused acidification and eutrophication in different parts of Sweden; (ii) to generate knowledge about long-term variation in the field deposition, (iii) to give the background data from low polluted areas for calculation of pollutants deposition in more polluted areas the monitoring of pollutants in air and precipitations are proceed. Ozon and air samples for analysis of sulphur and nitrogen compounds, HCl as well as basic metal ions (Na, K, Ca, Mg, are taken on a monthly basis in air and precipitation. Ozone, as well as sulphur and the nitrogen compound particles are measured in air, and sulphur and nitrogen compounds, base cations, pH and electro-conductivity in precipitation.
This project is now part of the project : Acidifying and Eutrophifying Substances in Air and Precipitation
National Environmental Monitoring in Sweden. The project is included in a European Monitoring and Evaluation Programme network (EMEP). The subprogram main task is to check if international agreements as UN Convention on Long range Trans-boundary Air Pollution (CLTRAP) is followed. The measurements follow up the Swedish national generational goals "Natural Acidification Only", "A Non-Toxic Environment" and "Clean Air". The network comprises 10 stations, out of which three are in north Sweden, the two one are in AMAP area. Air chemistry is monitored by diffusion samplers. The following compounds are measured: SO2, SO4, tot-NH4, tot-NO3, soot, NO2. Precipitation quality is monitored following measured compounds: SO4-S, NO-N, Cl, NH4-N, Ca, Mg, Na, K, pH, EC. Metals in air and precipitation are analysed only at one north station (Bredkälen), and include: As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, V, Hg, methyl-Hg.
National Environmental Monitoring Programme in Sweden, in the "Air" programme area. Eleven chemical parameters are measured in precipitation every month, and in the air Hg (TGM and TPM) is measured weekly. Measurements are carried out at 4 stations in Sweden and one in Finland. The project is part of an international network that follows the variations in the levels and deposition of heavy metals, particularly mercury, in the Arctic region.
This project is a merging of two previous projects: "Pollutants in air, daily values" and "Pollutants in air, monthly values, Precipitation chemsitry, monthly sampling, Ozone measurements, passive sampling. S- and N- Components in air with passive sampling."
National Environmental Monitoring program in Sweden. The subprogram "Acidifying and Eutrophifying Substances in Air and Precpipitaiton" is included in a European Monitoring and Evaluation Programme network (EMEP) and in the national program "Air and Precipitation Chemistry Network" (LNKN). The EMEP network currently comprises 4 stations, out of which 1 is located in northern Sweden, close to AMAP area. The LNKN measurements of substances in air are currently performed at 9 stations and in precipitation at 16 stations. Monitoring is performed Daily within the EMEP network and monthly within the LNKN network.
National Environmental Monitoring in Sweden in the "Air" programme. The objective of the project is to follow climate-changing gases and particles and which effects they could have on the climate of earth. To understand and assess the human effect on the climate, regionally and globally, the atmospheric aerosols and greenhouse gases are monitored. The project aims follow: (i) detecting long-term trends in the carbon dioxide level, as well as trends in the amount or composition of aerosols in the background atmosphere; (ii) provide a basis to study the processes that control the aerosol life cycle from their formation through aging and transformation, until being removed from the atmosphere; (iii) provide a basis to study the processes (sources, sinks, and transport pathways) that control the level of carbon dioxide in the atmosphere; (iv) contribute to the global network of stations that perform continous measurements of atmospheric particles and trace gases to determine their effect on the earths radiation balance and interaction with clouds and climate.
National Environmental Monitoring in Sweden in "Air" programme and sub-programme "the thickness of the ozon layer". The project follows changes in the thickness of the ozone layer in the atmosphere over Sweden.
National Environmental Monitoring Programme in Sweden. The objective is to follow the deposition of heavy metals over Sweden by the analyses of their concentration in two selected species of moss. The selected species are: Red-stemmed Feather-moss (Pleurozium schreberi) and Mountain Fern Moss (Hylocomnium splendens). Preferred specie: Red-stemmed Feather-moss (Pleurozium schreberi). Metals adsorbed by mosses almost exclusively come from the air and metal concentration in mosses are therefore seen as a proxy for metal deposition. Analysed elements are: Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, V, Zn (2015). The moss samples are taken from over 600 stands across Sweden.
National Environmental Monitoring Programme in Sweden. Measurements of persistant organic pollutants in air and precipitation are carried out at Råö, Hallahus, Aspvreten, and in Pallas (Northern Finland). The monitoring programme includes measurements of: polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), some pesticides (HCH, DDT) and polybrominated diphenylethers (PBDE).
At the Zeppelin Station on Svalbard, Stockholm University, Department of Environmental Science and Analytical Chemistry (ACES) measures trends in atmospheric carbon dioxide in background atmosphere (Table 4, #1.6, Table 5, ##3–4). In collaboration with NOAA/CMDL in Boulder, USA, air is regularly sampled in flasks for analysis of CO2, CH4, CO, 13CO2, H2, N2O, SF6, and 18O in CO2. At the top of the micrometeorological tower (102 m) at Norunda north of Uppsala, carbon dioxide and methane concentrations are also measured (Fig. 2, Table 5, #5). Other sites for CO2 measurements are the flux sites described below. Air samples are taken at 10 sites in northern Sweden for analysis of SO2, NO2, and surface-near ozone (Fig. 2, Table 4, #1.2) in the air- and precipitation chemistry network. At the Zeppelin Station on Svalbard, Stockholm University, Department of Environmental Science and Analytical Chemistry (ACES) also measures the amount and composition of aerosols in the background atmosphere. Measurements include particle concentration and size distribution, light absorption and scattering, and cloud residual properties (cloud residuals are the particles which took part in cloud droplet or ice crystal formation)
Arctic study of trophospheric aerosol, clouds and radiation