The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
Monitoring of cesium-137 and strontium-90 in consumption milk is a sub-programme of a national monitoring program regarding environmental radiation in Sweden. The sub-programme has been ongoing since 1955. In the event of increased deposition of radionuclides, e.g. after a nuclear accident, transfer to cow milk is a quick process. The concentration in milk is therefore a good indicator of any changes of the levels of radionuclides in the area. Monitoring is performed at 5 dairies: Umeå, Sundsvall, Kallhäll, Jönköping and Malmö, where milk is sampled 4 times per year.
Measurements of gamma-radiation in the environment (from ground to cosmos). Radioactivity in Intensive Net is measured on the soil surface at 28 sites in Sweden. The measurements are continuous and sound the alarm if radioactivity increases. Measured is the dose rate of gamma radiation. Radioactivity in Extensive Net is concerned all municipalities in Sweden which has got one instrument for gamma radiation measurement and each county board has got two. Every seventh month they measure radioactivity at two to four predefined spots as reference measurement. Radioactivity in Air is conducted at five stations with air filter sampling and analysis of radioactivity maintained by Swedish Defence Research Agency (FOI). Out of these stations Umeå and Kiruna are located in northern Sweden.
Monitor the levels of radionuclides (137Cs and 210Po) in selected fish and seafood species in the Norwegian and Barents Sea.
The aim of the CEEPRA (Collaboration Network on EuroArctic Environmental Radiation Protection and Research) project is establishment of a cooperation network in the EuroArctic region, cross-border exchange of knowledge and skills, improvement of emergency preparedness capabilities and risk assessments in case of nuclear accidents in the region as well as raising awareness and knowledge in the general public and stakeholders with respect to the nature, common challenges and associated risks in the area of nuclear safety, emergency preparedness and radioactivity in the environment. The project will study the current state of radioactive contamination in terrestrial and marine ecosystems in the EuroArctic region by examining environmental samples collected from the Finnish Lapland, Finnmark and Troms in Norway, the Kola Peninsula and the Barents Sea. The results will provide updated information on the present levels, occurrence and fate of radioactive substances in the Arctic environments and food chains. Special attention will be given to collection and analyses of natural products widely used by population in Finland, Russia and Norway, such as berries, mushrooms, fish and reindeer meat. The region-specific risk assessments will be carried out through modelling and investigation of long-term effects of potential nuclear accidents in the EuroArctic region and possible impacts on the region’s indigenous population, terrestrial and marine environments, reindeer husbandry, the natural product sector, tourism and industries. Open seminars for general public and target groups will be arranged in Finland, Russia and Norway during the project implementation period to provide relevant information on radioactivity-related issues and the status in the region.
The Norwegian Radiation Protection Authority is responsible for a network of 5 air filter stations. These collect air samples through high density filters which are analyzed weekly by gamma spectroscopy. The network was established in the early 80s and is continuously updated. The purpose of the network is to assess the levels and composition of emissions from incidents and accidents. In addition, with the help of meteorological data, possible sources of release may be identified.
As part of the Austrian radioactivity monitoring network an air sampler and a high resolution radioactivity detection system is installed at the high altitude Sonnblick Observatory (3105 m). The objective is to monitor the radioactivity in air at high altitudes.
The project monitors the artificial radioactivities in natural products in Finnish Lapland. The work mainly started after Chernobyl accident.
GAW serves as an early warning system to detect further changes in atmospheric concentrations of greenhouse gases and changes in the ozone layer, and in the long-range transport of pollutants, including acidity and toxicity of rain as well as the atmospheric burden of aerosols.
Geochemical mapping project based on multimaterial and -elemental method covering the NW Russia and adjacent areas of Finland and Norway. NW-Russia is of strategic importance not only for Europe but also for the sosio-economic development of the whole Russia for its richness in natural resources. Their use must be based on environmentally acceptable principles. In addition, within the area exist numerous industrial centres whose environmental impacts are unknown. The information produced by the project is significant for the future development of the area and remedial measures of the environment. The project lead by the applicant, will be carried out in 1999-2003 in cooperation with Russian and Norwegian partners.
Part of the continuous nationwide monitoring of radionuclides in Finland. The dose rate monitoring network in Finnish Lapland comprise 32 automatic measurement stations (Finnish nation-wide monitoring network consists of about 257 stations equipped with GM tubes). Three of the stations are equipped with LaBr3-detectors measuring a gammaspectrum with 10 minute intervals. The network is intended for civilian defence and surveillance purposes, not for research. It is a good early warning system in radiation fallout situation. Every monitoring station have individual alarm level: 7 days average dose rate + 0.1 microSv/h. The dense network indicate also the extent of the radioactive contamination.
Part of the continuous nationwide monitoring of radionuclides in Finland. The dose rate monitoring network in Finnish Lapland comprise 32 automatic measurement stations (Finnish nation-wide monitoring network consists of about 257 stations equipped with GM tubes). Three of the stations are equipped with LaBr3-detectors measuring a gammaspectrum with 10 minute intervals. The network is intended for civilian defence and surveillance purposes, not for research. It is a good early warning system in radiation fallout situation. Every monitoring station have individual alarm level: 7 days average dose rate + 0.1 microSv/h. The dense network indicate also the extent of the radioactive contamination.
Part of the continuous nationwide monitoring of radionuclides in Finland. STUK is responsible for monitoring of radioactivities in atmosphere. STUK operates a network of eight aerosol samplers from which three are located in Finnish, Lapland at Rovaniemi, Sodankylä and Ivalo. The sampling is done either weekly or bi-weekly. Gammaspectroscopic measurements are done in the laboratory in Rovaniemi. The lowest activities are detected at microBq/m3 level.
Elevated levels of 137Cs caused by previous atmospheric nuclear weapons tests fallout and the Chernobyl accident have been observed in Finnmark, Northern Norway. Due to the large consumption of potentially contaminated reindeer meat, whole body measurements of 137Cs levels in reindeer herders have been performed since 1965.
It is well known that tritium, the hydrogen isotope 3H, is part of nuclear weapons and was spread all over the world as a consequence of nuclear bomb explosions. Rarely it is regarded as being “natural”, but actually it is. Long time before humans appeared tritium already existed on earth for a long time. This “natural” tritium is the product of cosmic radiation interactions with the atmosphere (mainly N-14). Nowadays this kind of tritium production contributes only to a small extent to the atmospheric tritium. Tritium is radioactive and decays with a half-life of 4.500 days under the emission of a very low energetic beta-particle. In the atmosphere tritium can be found within water vapour (HTO), hydrogen (HT) or methane (CH3T). Yet, the main portion of tritium released during the 1960’s has already been eliminated from the atmosphere by radioactive decay and precipitation. A large amount is captured in the oceans. Indeed, today anthropogenic sources releasing tritium to the environment can still be found. At the end of the 1980‘s contacts with research institutes in former Eastern Bloc countries lead to the idea of establishing a tritium sampling network. The primary goal was the documentation of atmospheric tritium. Statements about potential releases and their sources and the radiation hazards associated should be obtained. Furthermore it might help with the verification of meteorological models. To acquire comparable results a standardised sampling device was developed. This system simultaneously collects samples of air humidity and hydrogen. It was planned to enlist the gathered data in a database and to use them for the following subjects: • observation of local and global tritium transport in the atmosphere • detecting tritium releases and locating their sources • radiation risk evaluation • examining the transmutation of elemental hydrogen into water under natural conditions With the breakdown of the Eastern Bloc the idea of this common network faded away. At the moment only at two stations in Austria air humidity and air hydrogen are collected as planned: since 1991 at Research Center Arsenal in Vienna and since 1999 at Hoher Sonnblick a high mountain station (3160 m). Currently we are working together with the IAEA on a project with the aim to find a model, which helps evaluating weather conditions and in particular the climatic processes. As for these investigations the stable isotopes H-2 and O-18 are used and the currently used device introduces fractionation a new method is developed right now. Since the specific tritium activity concentration is not affected by air pressure or humidity the values for the two locations can be compared directly. In general the measured values are similar but sometimes differ noticeably. For example a peak value for the tritium activity concentration observed during March 2000 at Sonnblick was not noticed in Vienna. In this context the attempt should be made to analyse the air flows with the help of trajectories. The tritium activity concentration of air humidity is primarily determined by the amount of humidity itself. Therefore the concentration is directly linked to the seasons. Only significant changes in the specific tritium activity concentration can be detected by the use of the tritium activity concentration. Seasonal variations within the tritium activity concentration of hydrogen could not be observed. The values vary around 10 mBq/m3.
The 2003 field activity will be mainly dedicated to coring activity which includes: 1. the sampling of snow and ice cores from a Ny-Ålesund nearby glacier (midre Lovenbreen). 2. the collection of near coast (Kongsfjorden) and lakes sediments (maximum under pack depth 30 m). Sampling collection of ice and sediment cores will be performed using a portable, electric operated, sampling corer. The transport of all materials up to each sampling station should be performed with snowcats.
Specific objectives of the proposal are: 1. the determination of the cloud coverage by means of a simple methodology based on radiometric measurements; 2. the determination of the radiative forcing produced by different type of cloud and coverage for applications into GCM’s as ‘cloud parameterisations’. The results will be obtained for two different radiative regimes by means of different experimental campaigns.
This year the Norwegian Radiation Protection Authority hope to conduct marine biota, water and terrestrial sampling in the area of Kongsfjord. Such samples as are obtained will be analysed for a suite of natural and anthropogenic radionuclides, the resulting data contributing towards NRPA’s marine and terrestrial monitoring program and research efforts in the area of Arctic radioecology. These research efforts are currently focused on two areas: Arctcic marine radioecology and Arctic terrestrial radioecology. The marine component of this years field work will provide samples allowing for the study of variability in the uptake of radioactive marine contamination in a High Arctic fjord. Samples will also be taken, where possible, of such species as constitute prey for seabirds in the area. The terrestrial component shall be concerned with factors pertaining to the clarification of the situation regarding elevated levels of radionuclides at certain sites within the Kongsfjord area, most pertinent being those associated with detrital accretions close to bird colonies.
During 2000, observations under the framework of control of radioactive contamination were continued at 34 sites of the State System of Radiation Monitoring in the Russian Arctic. At all stations, daily monitoring of exposure dose strength of gamma emissions, and daily sampling of radioactive fallout from the atmosphere to determine total beta-activity are conducted. At sites in Arkhangelsk, Naryan-Mar, Salekhard, Murmansk, Dikson Island, Zhelaniya Cape, Kheis Island and Kandalaksha, sampling of atmospheric aerosols and precipitation was performed for specific radioisotopic analysis, including determination of tritium. Samples of surface water for determination of levels of 90-Sr and tritium were collected at radioactive contamination control stations in the mouth regions of the largest rivers of the Russian Arctic (Severnaya Dvina, Pechora, Mezen, Ob, Yenisey, Khatanga, Indigirka). 26 samples were collected for this purposes in 2000. Samples for determination of 90-Sr in seawater were collected at relevant sites in the Barents Sea and White Sea.
Monitoring the levels of radioactivity in water, sediments and biota
1) To perform simulation scenarios for the 21st century, including global warming scenarios, of potential radioactive spreading from sources in the Russian Arctic coastal zone and its impact on Barents, Greenland and Norwegian Seas and the Arctic Ocean; 2) To update the environmental and pollution data base of the Arctic Monitoring and Assessment Program (AMAP); 3) To assess, select and define the most probable simulation scenarios for accidental releases of radionuclides; 4) To implement a Generic Model System (GMS) consisting of several nested models designed to simulate radionuclides transport through rivers, in the Kara sea and in the Arctic ocean / North Atlantic; 5) To carry out simulation studies for the selected "release" scenarios of radionuclides, using various atmospheric forcing scenarios; 6) Assess the impact on potential radioactive spreading from sources as input to risk management.