The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
The purpose of the BioBasis programme is to monitor basic qualitative and quantitative elements of biodiversity in the terrestrial ecosystems at Zackenberg in Northeast Greenland. The programme provides data on typical High Arctic species and processes that can be expected to react on year to year variation in climate as well as long-term climate change. It includes 30 variables of terrestrial and limnic plant, arthropod, bird and mammal dynamics in the Zackenberg valley.
This project was previously a part of the project: National Survey of Forest Soils and Vegetation.
The Swedish National Forest Inventory (NFI) has the task of describing the state and changes of Sweden's forests. The inventory gathers basic information on forests, forest stand conditions and vegetation. Regularly monitored variables are: forest state, injuries, growth, logging operations, new forest stand, and environmental assessment. There is a close collaboration between the NFI and the Swedish Forest Soil Inventory (SFSI).
This project has been divided into two new projects: The Swedish Forest Soil Inventory and the Swedish National Forest Inventory.
The Swedish National Forest Inventory has the task of describing the state and changes in Sweden's forests. The inventory gathers basic information on forests, soils and vegetation. It includes most aspects concerning soils, for example: soil types, soil chemistry including organic matter, water conditions and content of stones and boulders. Acidification, nitrogen deposition and the contribution by soils to climate change are some of the current issues dealt with. Regularly reported variables are: forest state, injuries, and growth, logging operations, new forest stand, and environmental assessment. Invented variables on permanent sampling plots include: position in the landscape, field vegetation, site conditions, soil sampling, assesment of soil characteristics, chemical analysis of soil in O-, B-, BC- and C-horizons.
NILS is a nation-wide environmental protection programme that monitors the conditions and changes in the Swedish landscape.
The programme started in 2003 and includes field inventory and aerial photo interpretation of permanent sample plots in all types of terrestrial environments.
NILS is mainly funded by the Swedish Environmental Protection Agency and an important objective is to provide information for follow-up of the Swedish national environmental objectives and the Natura 2000 network. NILS also contributes data to environmental research and international reporting.
TOV is based on integrated monitoring where species and ecosystems are seen in context, providing better opportunities to interpret the results. TOV areas include seven monitoring sites in Boreal birch forest, all nature-protected areas. Lund in the south to Dividalen north is monitoring; lichen and algae on trees, ground vegetation, rodents, passerine birds, grouse, Gyrfalcon and Golden Eagle. There are also 10 Boreal spruce forest areas monitored, only for ground vegetation. The range of areas reflects both climate variability and differences in impacts from long-range pollutants throughout the country.
Monitoring of flora and vegetation includes records of species and species composition of ground vegetation and mosses, lichens and fungi on tree trunks. Fauna monitoring includes population and reproduction monitoring for species which may indicate effects of long-range transboundary air pollution, and population monitoring of key species. In addition, a nationwide survey of selected variables, prevalence of lichen and algae on trees, as well as contaminants in wildlife species and eggs from birds of prey. Observed changes are considered in relation to the influence of anthropogenic factors.
Lichens are the best terrestrial bioindicators for radioactive fallout and also the most important link in foodchain lichen - reindeer - man. Generally, Fenced permanent sampling plots are used to study the biological half-life of 137Cs in lichen. However, some of the STUKs sampling plots are unfenced which are subjected to grazing by reindeer. Start year: early 60's as a project of the Radiochemistry Department of University in Helsinki. Stuk's participation since 1975. Data are collected from 1961, 1980, 1982 or 1986, continuously every 3-5 years. Data processing/work-up and data archiving/reporting work are conducted from 1961, 1980, 1982. Continous data sets from 1986 to 2010.
The Nuuk-Basic project aims to establish a climate monitoring programme on the westcoast of Greenland. During two workshops, one being in Nuuk with field survey, framework for a future climate monitoring programme will be established. The programme builds on the concept and institutions already performing climate monitoring in NE-Greenland through ZERO (Zackenberg Ecological Research Operations).
The ZERO database contains all validated data from the Zackenberg Ecological Research Operations Basic Programmes (ClimateBasis, GeoBasis, BioBasis and MarinBasis). The purpose of the project is to run and update the database with new validated data after each succesfull field season. Data will be available for the public through the Zackenberg homepage linking to the NERI database. The yearly update is dependent on that each Basis programme delivers validated data in the proscribed format.
The project studies the development through time of contaminants (heavy metals and organic pollutants) in animals in Greenland.
The photosynthetic productivity and the factors affecting it are measured in the nival zone of the Alps. Patterns of CO2 exchange for several lichen species are determined whilst recording environmental factors such as light and temperature and lichen water content. Whilst these records will show the lichen response over the year they can most easily be interpreted when the photosynthetic ability of individual lichens is well known. To achieve this the response of each species to light intensity, temperature, thallus water content and humidity will be determined under fully controlled conditions in the laboratory. The final aim is to achieve an initial carbon balance model for the lichen species. This will be aided considerably by the deploying of a continuously recording chlorophyll fluorescence system that will provide activity data for one lichen species on a better than hourly basis throughout the year.
Overall objective is to obtain net fluxes for carbon and freshwater water from an Arctic catchment under base-case and global change scenarios. Objective of the Vrije Universiteit Amsterdam is to study the temporal and patial variability in floodplain sediment balance over the last 2000 years. Research activities: Selected areas in the Usa basin will be studied in detail, both in the zones of continuous and discontiunous permafrost. Fieldwork was and will be conducted in the summers of 1998 and 1999. At selected field sites, the present day processes of river erosion and deposition will be evaluated and the natural evolution and variation of amount and rate of erosion and deposition will be determined for the last 2000 years.
Population monitoring of Gyrfalcon, Golden Eagle, Willow Grouse and Passerine birds
The aim of the project is to monitor forest health in the border areas between Norway and Russia. The impact on the forest ecosystems in the border areas is varying. In the areas close to the nickel smelter (in Nikel), the damage is serious, while the damage on the Norwegian areas are much less. Here the damage is mostly related to lack of lichen vegetation on birch stems. The moss vegetation in the bottom layer is also influenced. In some cases, when certain weather conditions fell together with high emissions of sulphur dioxide, visible damage has been developed on leaves of shrubs and trees, even on Norwegian territory. Even the emission normally does not cause visible damage on Norwegian territory; chemical influenced is traced over large Norwegian areas
The aim of the project Intensive monitoring of forest ecosystem in an air pollution gradient from Nikel and westwards, running in the period 1994-1998/99, has been to develop and perform environmental monitoring in the border areas between Norway and Russia. The project is a contribution to the joint Norwegian/Russian Environmental Co-operation. Russian scientists have established and performed analyses at four monitoring sites in Russia, while Norwegian scientists have done similar monitoring at adjacent Norwegian areas. The scientists have worked together in two workshops and in the field. The collaboration has been efficient carried out by extensive use of e-mail. An important result for of the project has been harmonised field methodology, which has been put into practice by means of common fieldwork. The impact on the forest ecosystems in the border areas is varying. In the areas close to the nickel smelter (in Nikel), the damage is serious, while the damage on the Norwegian areas are much less. Here the damage is mostly related to lack of lichen vegetation on birch stems. The moss vegetation in the bottom layer is also influenced. In some cases, when certain weather conditions fell together with high emissions of sulphur dioxide, visible damage has been developed on leaves of shrubs and trees, even on Norwegian territory. Even the emission normally does not cause visible damage on Norwegian territory; chemical influenced is traced over large Norwegian areas
In 1990, the Directorate for Nature Management (DN) established an area for integrated monitoring within Børgefjell National Park, Røyrvik, N Trøndelag. Studies of vegetation-environment relationships in the area was performed by NINA. The area includes both subalpine birch forest and low alpine heath. The new established vegetation investigation included all together 80 different species. This material was processed numerically by using multivariate methods. Indirect gradient analyses were performed using Detrended Correspondence Analysis (DCA) and Local Nonmetric Multidimentional Scaling (LNMDS). Direct gradient analyses were performed by using rescaled hybrid Canonical Correspondence Analysis (CCA). Non-parametric correlation analyses, Kendall’s , were performed between environmental parameters and DCA axis values. The results of the numerical and statistical processing were used partly to provide a description of the vegetational structure in the material and partly to quantify how much each ecological parameters contributed to determination of vegetational structure. This work shows the species distribution along various complex gradients; moisture, nutrient conditions, light etc. The investigation is primarily designed to study vegetation dynamics along these gradients and whether changes in the number of species can be related to changes in physical, biotic and, not least, chemical parameters. Variance analysis was performed to assess to what extent the sample plots tends move in a determined direction from 1990 to 1995. The variation between the years were not significant along the primary complex gradients, but there were a significant displacement of species along the following gradients. The most important species were: Vaccinium vitis-idaea, Melampyrum sylvaticum and Hylocomium splendens), which showed an increase and some cryptogams like Brachythecium reflexum, B. salebrosum and Cladonia ecmocyna which declined.
In 1993, the Directorate for Nature Management (DN) established a new area for the monitoring of terrestrial ecosystems in Dividalen National Park in Troms County. This report presents the reanalysis of vegetation and soil from this terrestrial monitoring area. The area in Dividalen is located in the northern boreal birch forest, in a relatively continental section where the dominant type of vegetation is bilberry-mountain crowberry birch forest (A4c). The structure of the vegetation is analysed by multivariate methods (ordination). In Dividalen all together 131 species were found; 75 vascular plants, 18 mosses, 14 liverworts and 24 lichens. This is a decrease from the number of species recorded in 1993 when 141 species were found in the same mesoplots: 74 vascular plants, 24 mosses, 18 liverworts and 25 lichens. The decrease was not significant for the total number of species or for the total number of vascular plants. However the total number of cryptogames showed a slight significant decrease in number between 1993 and 1998. This may be due to increased cover of several ericoid species. In Dividalen we found no significant changes in vegetation composition for the periode 1993 – 1998 along the first four ordination axes. However, there were changes in mesoplots with high DCA1 values. The changes were in the direction towards lower species richness. Species like Myosotis decumbens, Poa alpina, Solidago virgaurea, Cerastium fontanum and Rumex acetosa ssp. lapponicus showed the largest decrease in these mesoplots. Species that showed the largest increase were Vaccinium vitis-idaea, Mnium spinosum and Polytrichum juniperinum. We have found no relations between these changes and acidification due to deposition of pollutans. Lack of disturbance factors in the area in the last years, which favours an increase in ericoid vegetation, is the probable explanation for the changes.
The aim of this project is to monitor epiphytic lichen communities in a way that enables us to separate between natural variation and the effects of acidification and long range transported air pollutants.
The major aim in AMAP is to monitor the levels of anthropogenic contaminants in all major compartments of the Arctic environment, and assess the environmental conditions in the area. This core programme will provide the Danish/Greenlandic authorities with data which make it possible to take part in the international AMAP programme under the Arctic Council. In order to monitor the levels of anthropogenic pollutants, samples will be collected and analysed. The measured components will include heavy metals and persistent organic pollutants in order to allow for spatial and temporal trends in Arctic biota. The program has taken in consideration the recommended importance of persistent organic pollutants and mercury and the importance of the marine food chain. The core program focuses on areas with high population density or areas with high levels of pollutants in the environment.
Short Term i) to provide additional information for use in updating health advisories. Long Term i)to investigate the fate and effects of contaminant deposition and transport to the Yukon, allowing Northerners to better manage the issue of contaminants. ii)to determine levels of contaminants for use in long term trend monitoring.
It is suggested to analyse a variety of samples from Greenland and the Faroe Islands for radionuclides. The technetium pulse now under way from England will be surveyed in seawater, seaweed and shrimp, and time trends in concentrations of caesium-137, strontium-90 and plutonium will be monitored in selected components of marine, fresh water and terrestrial environments. As far as possible, the sampling programme is coordinated with other sampling programmes in Greenland and the Faroe Islands. It is suggested to re-investigate the weapons plutonium pollution in Bylot Sound off Pituffik on a 5-year basis i.e. year 2002 in the present AMAP programme