The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
In 2013 a new ecosystem monitoring programme “DiskoBasis” was initiated at Arctic Station on Disko Island, Greenland. The project is partly funded by the Danish Energy Agency. The primary objective of DiskoBasis is to establish baseline knowledge on the dynamics of fundamental physical parameters within the environment/ecosystem around Arctic Station. This initiative extends and complements the existing monitoring carried out at Arctic Station by including several new activities –especially within the terrestrial and hydrological/fluvial field. DiskoBasis include collection of data in the following sub-topics; • Gas flux, meteorology and energy balance • Snow, ice and permafrost • Soil and soil water chemistry • Vegetation phenology • Hydrology -River water discharge and chemistry • Limnology -Lake water chemistry • Marine -Sea water chemistry
The GeoBasis programme collects data describing the physical and geomorphological environment in Zackenberg, North East Greenland. This includes meteorology, carbon flux and energy exchange, snow cover and permafrost, soil moisture, –chemistry and nutrient balance, hydrology, river discharge and – sediment
The GeoBasis programme collects data describing the physical and geomorphological environment in Zackenberg, North East Greenland. This includes CO2-flux, snowcover and permafrost, soil moisture, –chemistry and nutrient balance, hydrology, river discharge and –sediment. GeoBasis also supports the ClimateBasis programme with service and datahandling during the field season.
In order to estimate the effect of rising global temperatures on organic carbon (OC) stocks in the temperature-sensitivity Arctic environment, our project aims at investigating the transfer of terrestrial OC from permafrost soils to the Arctic Ocean. Detailed compositional analyses of bulk soil and sediments along a transport trajectory combined with compound-specific isotopic (13C and 14C) analysis of selected lipid biomarkers will be used to study alteration processes of organic matter occurring in the soil and its during transport. Sub-goals include to a) identify suitable biomarkers for soil organic carbon in permafrost soils, b) determine residence times of selected biomarkers in permafrost soils, fluvial and marine sediments, and c) quantify carbon transfer from source (soil) to sink (marine sediment) and its timescale.
The ZERO database contains all validated data from the Zackenberg Ecological Research Operations Basic Programmes (ClimateBasis, GeoBasis, BioBasis and MarinBasis). The purpose of the project is to run and update the database with new validated data after each succesfull field season. Data will be available for the public through the Zackenberg homepage linking to the NERI database. The yearly update is dependent on that each Basis programme delivers validated data in the proscribed format.
Project Description: - Landform mapping of the periglacial and glacial structures using remote sensing / aerial photography and field observation - Genetic studies of ground ice using geochemical and stable isotope techniques - Studies of microbial life in extreme periglacial environment
Monitoring of the active layer near Ny Ålesund as part of the international monitoring scheme CALM (Circumpolar Active Layer Monitoring)
Part of the international project Arctic Costal Dynamics (ACD) were Department of Physical Geography, University of Oslo participates. The working group consists of Trond Eiken (UoO), Bjørn Wangensteen (UoO) and Rune Ødegård (Gjøvik University College). The aim of this part of the ACD-project is to quantify coastal cliff erosion by the use of terrestrial photogrammetry.
3-D GPR (ground penetrating radar) profiling of permafrost deposits and examination of their geocryologic and sediment properties for verification of GPR profiles. The scientific project has the following aims: To improve the understanding of how GPR (ground penetrating radar) reflections are generated in frozen ground; to reveal the main factors (geophysical and sedimentary) controlling electromagnetic reflection characteristics and their spatial continuity as examplarily studied along a continuous permafrost section, i.e. to distinguish between physical (dielectricity, conductivity and density) and sedimentary (ice/water content, grain size distribution, content of organic matter, texture) properties and estimate their proportionate quantity on the origin of the wave reflections.
The active layer, the annually freezing and thawing upper ground in permafrost areas, is of pivotal importance. The moisture and heat transfer characteristics of this layer also determine the boundary layer interactions of the underlying permafrost and the atmosphere and are therefore important parameters input for geothermal or climate modeling. Finally, changes in the characteristics of the permafrost and permafrost related processes may be used as indicators of global ecological change provided the system permafrost-active layer-atmosphere is understood sufficiently well. The dynamics of permafrost soils is measured with high accuracy and high temporal resolution at our two sites close to Ny-Ålesund, Svalbard. Using these continuous data we quantify energy balance components and deduce heat transfer processes such as conductive heat flux, generation of heat from phase transitions, and migration of water vapor.
- To support the further development of a geocryological database for the Usa Basin (East-European Russian Arctic), including key characteristics of permafrost such as distribution, coverage, temperature, active layer, etc. - To create GIS-based permafrost maps at the scale of 1:1,000,000 for the entire Usa Basin and at 1:100,000 for selected key sites. - To reconstruct the history of permafrost dynamics at key sites in the region over the last thousands of years using palaeoecological analysis and radiocarbon dating of peat deposits, and over the last few decades using remote sensing imagery and/or monitoring (base case scenario). - To predict permafrost dynamics at key sites in the region under future conditions of climate change (20-100 yrs), using a 1-dimensional permafrost model (future global change scenario). - To assess the effects of permafrost dynamics under base case and global change scenarios on urban, industrial and transportation infrastructure in the Usa Basin. Research activities Based on several representative sites, late Holocene permafrost dynamics will be characterized using palaeoecological techniques. Variability in permafrost conditions over the last few decades will be studied based on the available data from long-term monitoring station records and from a time series of remote sensing images (optional). Mathematical modelling of permafrost dynamics will be carried out for at least two sites and a forecast of permafrost degradation in the area under anticipated climate warming will be developed. The likely effects of permafrost degradation upon regional infrastructure (inhabited localities, heat and power engineering, coal and ore mines, oil and gas extracting complex, pipelines and railways) will be analyzed using a GIS approach. GIS data layers on permafrost dynamics and infrastructure will be compared in order to delimitate high risk areas based on existing infrastructure and anticipated permafrost degradation. Hereafter, the created GIS may serve as a basis for more detailed forecasting of permafrost dynamics under both natural and anthropogenic climate changes in lowland and alpine areas of the East-European Russian Arctic.