Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 1 - 20 of 30 Next
1. Persistent organic pollutants in air and precipitation

National Environmental Monitoring Programme in Sweden. Measurements of persistant organic pollutants in air and precipitation are carried out at Råö, Hallahus, Aspvreten, and in Pallas (Northern Finland). The monitoring programme includes measurements of: polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), some pesticides (HCH, DDT) and polybrominated diphenylethers (PBDE).

Arctic Atmosphere Atrazin Contaminant transport Data management DDT DECA Diuron Endosulfan Fenantren HBCD HCB HCH Heptaklor Isoproturon Local pollution Long-range transport Mapping Organochlorines PAHs PBDE PCBs Persistent organic pollutants (POPs) Pesticides PFOA PFOS Polybrominated diphenylethers Temporal trends
2. Monitoring of long range transboundary air pollution, greenhouse gases, ozone layer and natural ultraviolet radiation

The main objective is to quantify the levels of air pollution in the artctic, and to document any changes in the exposures. It includes the necessary components to address impacts on ecosystems, human health, materials and climate change. 

AMAP Arctic air Arctic haze Atmosphere Atmospheric chemistry monitoring Atmospheric processes Carbon dioxide chlorofluorocarbons (CFC) Climate heavy metals methane Montreal & Kyoto Protocols PAHs PCBs POPs total gaseous mercury total ozone UV
3. Ecogeochemical mapping of the eastern Barents Region (Barents Ecogeochemistry)

Geochemical mapping project based on multimaterial and -elemental method covering the NW Russia and adjacent areas of Finland and Norway. NW-Russia is of strategic importance not only for Europe but also for the sosio-economic development of the whole Russia for its richness in natural resources. Their use must be based on environmentally acceptable principles. In addition, within the area exist numerous industrial centres whose environmental impacts are unknown. The information produced by the project is significant for the future development of the area and remedial measures of the environment. The project lead by the applicant, will be carried out in 1999-2003 in cooperation with Russian and Norwegian partners.

Geology PCBs Soils Catchment studies Mapping Heavy metals Radioactivity PAHs Long-range transport Acidification Pollution sources Contaminant transport Mining Radionuclides Arctic Local pollution GIS Geochemistry Dioxins/furans Data management Sediments
4. AMAP / Human Health in Finnish Lapland

The general objective of the human health sub-programme is to protect and promote the health of Arctic peoples, especially children, with respect to exposure environmental contaminants.

Pathways Organochlorines PCBs Heavy metals Indigenous people PAHs Spatial trends Persistent organic pollutants (POPs) Pesticides Temporal trends Human health Human intake
5. Pallas, AMAP station, Northern Finland

The overall objectives for operation of the station will follow those defined in the AMAP programme. The main interests are the levels and trends of airborne toxic pollutants (POPs and heavy metals) in northern Fennoscandia.

Atmospheric processes Organochlorines PCBs Arctic haze Heavy metals PAHs Long-range transport Acidification Contaminant transport Arctic Persistent organic pollutants (POPs) Pesticides Atmosphere Temporal trends
6. AMAP Oil assessment

AMAP has decided to prepare an assessment of the environmental impacts of oil and gas developments in the Arctic and of pollution by petroleum hydrocarbons. The assessment is planned to be ready in 2006. NERI will co-ordinate the Danish/Greenlandic contribution.

PAHs Petroleum hydrocarbons Seabirds Sediments Oil and Gas
7. Organic compounds: precursors and their oxidation products in the Artic environment

The min goals are: -to study the organic composition, trace gas and aerosols in environmental air; -to try to identify transport phenomena (i.e. from Europe), local degradation and removal processes; -to evaluate the effect of the organic compounds on the polar environment, toxic compounds or formed photochemical products in order to prevent and protect the climatology and their environment. Organic compounds determination is focused on two sampling field campaigns in the Arctic region, in the summer and in the winter corresponding at day conditions and night time.

PCBs PAHs Long-range transport Arctic Atmosphere
8. Long-term effects of offshore discharges on cold water zooplankton: establishing a test system for chronic exposure to offshore discharges

During the last decade the concern regarding environmental effects of the offshore industry has shifted from effects of drilling discharges on benthic communities, towards a stronger focus on the water column and effects on the pelagic ecosystem. At the same time, oil and gas development is expanding in the Norwegian and Russian sectors of the Barents Sea. In this regard, a project has been initiated to look at responses of especially Calanus spp. and other copepod species to long-term, sublethal exposure to selected offshore discharges and discharge components, as well as accidental oil spills. Calanus spp. is ecologically the most important zooplankton species along the Norwegian shelf and in the Barents Sea. A laboratory based facility for culture through several generations is being developed through this project. In addition, the impact of oil compounds on the cold-water and arctic Calanus species-complex will be examined by carrying out a series of laboratory (some at Ny Ålesund) and ship based experiments. The response parameters will include both behavioral (feeding, mate finding, avoidance) and physiological (mortality, egg production, development rates, oxygen consumption and assimilation efficiency) parameters. The ultimate outcome of this research is expected to be a supporting instrument for ecological risk assessment of offshore discharges, which is highly relevant both to the North Sea, the mid-Norway shelf and the Barents Sea.

Pathways Biological effects Biology PAHs Pollution sources Environmental management Contaminant transport Petroleum hydrocarbons Exposure Arctic Oil and Gas
9. Environmental effects of offshore oil activities: experimental tests of petroleum-associated components on benthos at community, individual, and cellular levels

This project will examine benthic processes in arctic and mid-latitude regions in order to derive specific conclusions on the sensitivity of benthic organisms and communities to acute spills of petroleum-related chemicals and routine releases of drill cuttings. We will carry out a series of controlled experiments on whole sediment communities and individual benthic organisms with additions of drill cuttings and petroleum-associated contaminants, arriving at a set of hypotheses on the likely impacts on the benthos of petroleum production activities at higher latitudes. A series of testable hypotheses will be formulated based on an examination of real-world monitoring data sets collected under Norway’s Petroleum Regional Monitoring Programme and results of mesocosm experiments performed previously at the Norwegian Institute for Water Research (NIVA) Station at Solbergstrand. These data sets will be examined in order to identify the geographic scope of responses to petroleum industrial activities. Through this work, we intend to propose procedures to improve the interpretation of benthic monitoring data for diverse environmental regions in Norway. The project is linked to several on-going NFR projects within the Polarklima programme. By involving a Ph.D. student the project will advance the education and training of young scientists in the field of biological effects studies related to petroleum development and exploration activities.

Biological effects PAHs Petroleum hydrocarbons Arctic Sediments Oil and Gas
10. Bioaccumulation, physiological and biochemical effects of pollutants in mussels

In order to evaluate the capacity of mussels to accumulate pollutants and to enhance growth and physiological effects, an investigation was carried out in the Faroe Islands and in the Skagerrak. In March 2000, about 1500 mussels of proper dimensions (length ranging between 5 and 6 cm) were collected in the Kaldbak Fjord (Faroe Islands) on a 10m water column. Selected mussels were divided in 4 groups (320 each) and deployed in 4 different stations (one at the Faroe Islands and three in the Skagerrak). Semipermeable membrane devices (SPMDs) were also deployed in the same stations for the preconcentration of lipophilic pollutants. One month later (end of April-beginning of May) mussels and SPMDs were recollected and sent to different laboratories for the determination of various parameters.

Mytilus Biological effects Biology scope for growth Organochlorines PCBs Heavy metals PCB bioindicator PAHs Long-range transport Contaminant transport Exposure PAH Persistent organic pollutants (POPs) Dioxins/furans SPMD bioconcentration
11. Interactions among infauna, microorganisms and polycyclic aromatic hydrocarbons in marine sediments

Dose-response experiments using 5 different sediment concentrations of fluoranthene (Flu) and pyrene (Py) respectively. Measuring radioactive marked Flu and Py in brittlestars and polychaetes and microbial degradation of Flu and Py in sediment. Also growth rate of brittlestars and polychaetes and determination of regenerationtime of brittlestar-arms.

Biological effects Biology PAHs microorganisms Petroleum hydrocarbons infauna Exposure Sediments
12. Bioactivation of polyaromatic hydrocarbons (PAHs) in crab (Cancer pagurus), shrimps (Crangon spp and Palaemon spp) and a polycheate (Neries pelagica).

To be completed.

Biological effects Biology PAHs
13. Ther use of SPMD's and DGT's for the detection of trace-level pollutanys in water

To be completed.

Organochlorines PCBs Heavy metals PAHs Long-range transport Contaminant transport Petroleum hydrocarbons Exposure Dioxins/furans
14. Atmospheric transport modelling of HM/POPs over Europe

The aim of this project is to assess the deposition of HM/POP over Europe and to evaluate models. Within the framework of UN-ECE, EMEP Meteorological Synthesising Centre-East (MSC-E Moscow) organised in co-operation with RIVM, a model intercomparison for operational transport models on HM in 1995. In this intercomparison the RIVM will participate with the TREND-model. Results of the intercomparison will also be reported to the OSPAR commission. A model comparison for POPs will follow later. The RIVM/EUROS model is extended with soil and surface water modules in order to improve the description of the exchange process of POPs (deposition and re-emission). With the model, long-term averages of the deposition and accumulatation of POPs are described and scenario-studies can be carried out. In the first instance, Lindane and B(a)P will be taken as examples of POPs dominantly present respectively in the gas phase and attached to particles. When emissions are available the calculations are extended to other POPs.

Pathways Atmospheric processes Heavy metals PAHs Long-range transport Contaminant transport Modelling Emissions Persistent organic pollutants (POPs) Pesticides Atmosphere
15. 'NAR-2000' expedition

The 'NAR-2000' expedition was performed during August-September 2000. The overall programme of work includes: - monitoring of pollution in air, waters and bottom sediments of freshwater lakes, soils and terrestrial vegetation - soil/botanical studies - visual and remote sensing (aerial photos and video surveys) studies of damage to soil and vegetation cover. Samples of river water and bottom sediments from 25 freshwater bodies and samples from 16 terrestrial sites in the area of the Varandey and Toravey oil fields were taken for chemical analyses.

Biological effects Organochlorines PCBs Soils Catchment studies Heavy metals PAHs Pollution sources phenols Petroleum hydrocarbons Forest damage soil damage Persistent organic pollutants (POPs) Local pollution Sediments Atmosphere Oil and Gas Temporal trends detergents
16. Monitoring pollution of air and precipitation in Arctic Russia

Stationary systematic observations of pollution in atmospheric air and precipitation. During 2000, observations of contaminant levels in atmospheric air in the cities of Murmansk, Nickel, Monchegorsk, Salekhard and Norilsk were conducted. Monitoring of sulphur and nitrogen compounds in air and precipitation was continued at the above locations and also at Yaniskosky (Kola peninsula) and Pinega (Arkhangelsk region) under the EMEP programme framework. Observations of CO2 were continued at the Teriberk station. Observations of the chemical content of atmospheric precipitation were carried out at 5 stations in the Arctic network of stationary observations: in the Krasnoshelye settlement area (Kola peninsula), Naryan-Mar (Pechora river area), Dikson Island, Turuhansk (Yenisey river area), and Kusyur settlement area (Lena river). Under a joint Russian-Canadian-AMAP project, monitoring of POPs and (from 2001) mercury in air at the Amderma site is conducted.

Organochlorines PCBs Arctic haze Heavy metals PAHs Long-range transport Acidification Contaminant transport Persistent organic pollutants (POPs) Local pollution Pesticides Atmosphere EMEP air monitoring urban air quality
17. 'Karex-Pechora' expedition

The 'Karex - Pechora' expedition marine investigations by the research vessel 'Ivan Petrov' in the Kara and Pechora seas in August 2000, and by the research vessel 'Hydrolog' during September-October 2000. During August 2000 samples of marine water, suspended and bottom sediments at 30 oceanographic stations were analyses for contaminants. At 8 stations, hydrobiological investigations included sampling of benthic organisms, plankton and fish, for studies of bioaccumulation and transformation of contaminants.

Shelf seas Organochlorines PCBs Hydrography Heavy metals Fish PAHs Long-range transport Spatial trends Contaminant transport Petroleum hydrocarbons marine benthos Persistent organic pollutants (POPs) Sediments Oil and Gas
18. 'Lena-2000' expedition

The 'Lena-2000' expedition was performed in the area of the mouth of the Lena river and the shelf of the eastern part of the Laptev Sea during August 2000. Samples of river and marine water, suspended and bottom sediments were taken at 30 hydrological stations to study the mechanisms of contaminant transport by river water.

Shelf seas Pathways Organochlorines PCBs Hydrography Catchment studies Heavy metals PAHs Long-range transport Contaminant transport Petroleum hydrocarbons riverine transport Persistent organic pollutants (POPs) Sediments fluxes
19. 'Arctic-2000' expedition

The expedition 'Arctic-2000' included climatic, hydrometeorological and hydrochemical studies in the eastern part of the Central Arctic Basin, during the period July-August 2000.

Contaminant transport Heavy metals Hydrography Ice Long-range transport Oceanography Organochlorines PAHs PCBs Persistent organic pollutants (POPs) Petroleum hydrocarbons Sea ice
20. Persistent Toxic Substances (PTS), Food Security and Indigenous Peoples of the Russian North

Brief: Assessment of the significance of aquatic food chains as a pathways of exposure of indigenous peoples to PTS, assessment of the relative importance of local and distant sources, and the role of atmospheric and riverine transport of PTS in Northern Russia. Project rationale and objectives: (1) To assess levels of Persistent Toxic Substances (PTS) in the environment in selected areas of the Russian North, their biomagnification in aquatic and terrestrial food chains, and contamination of traditional (country) foods that are important components of the diet of indigenous peoples. (2) To assess exposure of indigenous peoples in the Russian North to PTS, and the human health impacts of pollution from local and remote sources, as a basis for actions to reduce the risks associated with these exposures. (3) To inform indigenous peoples about contamination by PTS of their environment and traditional food sources, and empower them to take appropriate remedial actions to reduce health risks. (4) To enhance the position of the Russian Federation in international negotiations to reduce the use of PTS, and to empower the Russian Association of Indigenous Peoples of the North (RAIPON) to participate actively and fully in these negotiations. Project activities to achieve outcomes: (1) Inventory of local pollution sources in the vicinities of selected indigenous communities. (2) Survey of levels and fluxes of PTS in riverine and coastal marine environment important for indigenous peoples living in these environments and using them for their subsistence; and assessment of fluxes of PTS to these environments via selected rivers and the atmosphere. (3) Dietary surveys of selected indigenous communities. (4) Study of biomagnification, based on measurements of selected PTS in representative species in food chains important for the traditional diet of indigenous populations. (5) Survey and comparative assessment of pollution levels of the indigenous and general population in selected areas. (6) Dissemination of results to all relevant stakeholders.

GEF Catchment studies Contaminant transport Caribou Exposure Reindeer Dioxins/furans Sediments Pesticides persistent toxic substances Human intake Marine mammals Pathways Organochlorines PTS PCBs Soils Heavy metals Fish Indigenous people PAHs Long-range transport Spatial trends Terrestrial mammals Arctic Persistent organic pollutants (POPs) Local pollution Seabirds Food webs Data management Diet Human health