The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
To provide the data necessary for quantifying the dynamics of arctic ecosystems, i.e. at the two field sites at respectively Zackenberg (Northeast Greenland) and Nuuk (West Greenland) Main gaps: Winter dynamics
The objective of the station is to facilitate ecosystem research in the High Arctic. According to the framework programme of Zackenberg Ecological Research Operations (ZERO) this includes: - Basic quantitative documentation of ecosystem structure and processes; - Baseline studies of intrinsic short-term and long-term variations in ecosystem functions; - Retrospective analyses of organic and inorganic material to detect past ecosystem changes; - Experimental studies enabling predictions of ecosystem responses to Global Change. The programme is coordinated with Nuuk Ecological Research Operations (see below) within the Framework of Greenland Ecosystem Monitoring (GEM). Main gaps: Winter dynamics
The objective is to allow comparative studies of ecosystem dynamics in relation to climate variability and change in respectively a high arctic and low arctic setting as Nuuk Basic comprises the same components as Zackenberg. According to the framework programme of Zackenberg Ecological Research Operations (ZERO) this includes: - Basic quantitative documentation of ecosystem structure and processes; - Baseline studies of intrinsic short-term and long-term variations in ecosystem functions; - Retrospective analyses of organic and inorganic material to detect past ecosystem changes; - Experimental studies enabling predictions of ecosystem responses to Global Change. The programme is coordinated with Zackenberg Ecological Research Operations (see above) within the Framework of Greenland Ecosystem Monitoring (GEM). Main gaps: Winter dynamics
In 2013 a new ecosystem monitoring programme “DiskoBasis” was initiated at Arctic Station on Disko Island, Greenland. The project is partly funded by the Danish Energy Agency. The primary objective of DiskoBasis is to establish baseline knowledge on the dynamics of fundamental physical parameters within the environment/ecosystem around Arctic Station. This initiative extends and complements the existing monitoring carried out at Arctic Station by including several new activities –especially within the terrestrial and hydrological/fluvial field. DiskoBasis include collection of data in the following sub-topics; • Gas flux, meteorology and energy balance • Snow, ice and permafrost • Soil and soil water chemistry • Vegetation phenology • Hydrology -River water discharge and chemistry • Limnology -Lake water chemistry • Marine -Sea water chemistry
The purpose of the BioBasis programme is to monitor basic qualitative and quantitative elements of biodiversity in the terrestrial ecosystems at Zackenberg in Northeast Greenland. The programme provides data on typical High Arctic species and processes that can be expected to react on year to year variation in climate as well as long-term climate change. It includes 30 variables of terrestrial and limnic plant, arthropod, bird and mammal dynamics in the Zackenberg valley.
Monitoring climatological and hydrological parameters in a low arctic environment.
MOSJ (Environmental Monitoring of Svalbard and Jan Mayen) is an environmental monitoring system and part of the Government’s environmental monitoring in Norway. An important function is to provide a basis for seeing whether the political targets set for the development of the environment in the North are being attained
1. Monitor transport of oil and hazardous substances from all sources into Norwegian coastal and oceanic waters through modelling, calculations and measurements. 2. Monitor contaminant status in selected indicators (biota, sediments, water, air, acidification). 3. Collect samples for the Norwegian Environmental Sample Bank. 4. Supply data for the Norwegian Integrated Management Plans The programme is operated by Norwegian Institute for Water Research (NIVA) on behalf of NPCA in cooperation with Norwegian Institute of Air Research (NILU), Norwegian Institute of Marine Research (IMR), The National Institute of Nutrition and Seafood Research (NIFES) and Norwegian Radiation Protection Authority (NRPA). - Locations: Norwegian marine waters (see attached map). Main gaps: New stations/indicators/parameters will be included when needed in the integrated management plans
This project has been divided into two new projects: The Swedish Forest Soil Inventory and the Swedish National Forest Inventory.
The Swedish National Forest Inventory has the task of describing the state and changes in Sweden's forests. The inventory gathers basic information on forests, soils and vegetation. It includes most aspects concerning soils, for example: soil types, soil chemistry including organic matter, water conditions and content of stones and boulders. Acidification, nitrogen deposition and the contribution by soils to climate change are some of the current issues dealt with. Regularly reported variables are: forest state, injuries, and growth, logging operations, new forest stand, and environmental assessment. Invented variables on permanent sampling plots include: position in the landscape, field vegetation, site conditions, soil sampling, assesment of soil characteristics, chemical analysis of soil in O-, B-, BC- and C-horizons.
Important progress has been made in recent decades to describe and understand how arctic terrestrial vertebrate interact, especially concerning predator-prey interactions. Indirect interactions between different prey species modulated by shared predators (e.g. Arctic fox) are believed to have important impacts on the structure and/or dynamics of some communities. Yet, our understanding of these types of interactions is still fragmentary. To fill that gap, we will build on ongoing projects exploring related questions in Canada (Marie-Andrée Giroux, Nicolas Lecomte, Joël Bêty) and Greenland (Olivier Gilg, Niels M. Schmidt), while taking advantage of existing networks (ADSN in North America and “Interactions” program in Greenland and Eurasia). The aim of the project is to promote the implementation of several common protocols that will (1) improve each collaborator’s knowledge at the site level and, more importantly, that will (2) be merged across sites and years to improve our understanding of the functioning and the influence of indirect interactions on arctic vertebrate communities in general.
Five types of data have been identified (by the 5 initiators of the project already mentioned above) as being mandatories to answer questions related to this topic. These data sets will be collected using 5 specific protocols described in the following chapters:
FUVIRC will serve ecosystem research, human health research and atmospheric chemistry research by providing UV monitoring data and guidance (i.e. calibration of instruments, maintenance of field test sites), research facilities (laboratories and accommodation), instruments and equipment.
The main objective of the facility is to enhance the international scientific co-operation at the seven Finnish research stations and to offer a very attractive and unique place for multidisciplinary environmental and atmospheric research in the most arctic region of the European Union. Factors such as, arctic-subarctic and alpine-subalpine environment, northern populations, arctic winters with snow, changes in the Earth's electromagnetic environment due to external disturbances and exceptionally long series of observations of many ecological and atmospheric variables should interest new users.
The first sampling for the soil and vegetation inventory of arable land was done in 1994-1995. The program covers arable land in Sweden and is designed to describe the state of Swedish arable land and the quality of the crop in relation to soil status, cultivation measures, and means of operation. At present soil sampling is made in 2000 fixed sampling points visited every 10th year.
At present, Sweden has 4 integrated monitoring (IM) sites that are part of a European network on integrated monitoring with an extensive measurement program. One of these sites, Gammtratten, situated in central Västerbotten, monitors several variables. This program is part of the International Cooperative Programme (ICP) on Integrated Monitoring (IM) of Air Pollution Effects on Ecosystems In Sweden there are three IM-sites, out of which Gammtratten in northern Sweden is one. The IM program at Gammtratten is performed by a consortium including IVL, SGU and SLU-EA. Basically there are three types of monitoring at the IM-sites, viz. Climatic, Chemical and Biological observations. Below is a list of the different analysis programs Air Concentration: SO2, NO2 Bulk deposition: pH, Cond, NO3-N, NH4-N, SO4-S, CL, Ca, Mg, Na, K, (Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As) Throughfall: pH, Cond, NO3-N, NH4-N, SO4-S, CL, Ca, Mg, Na, K, (Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As) Soil water: pH, Cond, tot-N, org-N, NO3-N, NH4-N, Tot-P, PO4-P, DOC, SO4-S, CL, Alk, Ca, Mg, Na, K, Al, Al-tot, Al-org, Al-inorg, Fe, Mn, Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As Groundwater: All years: pH, Cond, Si, NO3-N+NO2-N, NH4-N, PO4-P, TOC, SO4-S, CL, Alk/acidity, Ca, Mg, Na, K, Al, Fe, Mn, Cu, Pb, Zn, Cd, and some years also Hg, Metyl-Hg, Cr, Ni, Co, V, As Stream water: All years pH, Cond, NO3-N, NH4-N, PO4-P, TOC, SO4-S, CL, Alk/acidity, tot-N, tot-C, Ca, Mg, Na, K, Al, Fe, Mn, runoff volume and some years also Hg, Metyl-Hg, Cu, Pb, Zn, Cd and labile Al. Soil chemistry: pH in water extracts, exchange acidity, exchangeable Ca, Mg, Na, K, Al, Mn, and Fe, base saturation and total content of C, N, P, S, Cu, Zn, Pb, Cd and Hg Litter fall: Amount of litter (dw per unit area), total P, C, N, and S, K, Ca, Mg, Na, Al, Mn, Fe and during special years also Cu, Zn, Pb, Cd, Hg Litter decomp.: Dry weight loss from standard needles of Scots pine Soil respiration: CO2 -evolution per hour at 20oC, pH, Pb, Cd, Hg in OF-layer Understorey veg.: Field vegetation: Species, coverage, fertility, trees: speecies, coordinates, dbh, heiight, vitality. Down logs and stumps: species, dbh, degree of decomposition Needle chemistry: Total-P, tot-C, tot-N, and tot-S, K, Ca, Mg, Na, Al, Mn, Fe, Cu, Zn, Pb, Cd, Hg, arginin Biomass: Biomass, tot-C, tot-N, tot-P, K, Ca, Mg, Fe, Mn, Zn, Cu, B Forest injuries: Needle loss, dicolouring of needles, other injuries, tree class Simulated water balance: Precipitation, Evaporation, Runoff, Soil water, Snow Network type: integrated monitoring
The main objective is resource monitoring of Greenland Halibut.
To focus on the status of most of the large migratory Rangifer (caribou/reindeer) herds.
This mission of the North Slope Science Initiative is to improve the regulatory understanding of terrestrial, aquatic and marine ecosystems for consideration in the context of resource development activities and climate change. The vision of the North Slope Science Initiative is to identify those data and information needs management agencies and governments will need in the future to develope management scenarios using the best information and mitigation to conserve the environments of the North Slope
Zooplankton make essential links between producers and predators in marine ecosystems, so mediating in the CO2 exchange between atmosphere and ocean They can be indicators of climate variability, and changes in zooplankton species distribution and abundance may have cascading effects on food webs. West Spitsbergen Current is the main pathway of transport of Atlantic waters and biota into the Arctic Ocean and the Arctic shelf seas. West Spitsbergen Shelf coastal and fjordic waters, therefore, are natural experimental areas to study mechanisms by which the Atlantic and Arctic marine ecosystem interact, and to observe environmental changes caused by variability in climate. The main objectives of the zooplankton monitoring are: a) to study patterns and variability in composition and abundance in zooplankton of the West Spitsbergen Current and the West Spitsbergen fjords and coastal waters; b) to find out environmental factors responsible for the observed patterns and variability in zooplankton, and to understand possible relations between zooplankton and their environment on different space and time scales; c) to observe and monitor the variability in zooplankton in relation to local and global climate changes.
The Mývatn Research Station is an ecological field research institute under the Icelandic Ministry for the Environment. It operates in close cooperation with the University of Iceland. Its main task is to carry out and stimulate research that aids conservation and management of the Mývatn-Laxá nature protection area of international interest. Research activities are twofold: (1) long-term monitoring of the ecological situation; (2) short term research projects focusing on certain aspects of the ecosystem. Ecological monitoring started in 1975. It focuses on the entire food web of the lake. The nature of Mývatn and Laxá Myvatn is a large lake at the edge of the volcanic zone cutting through North Iceland. Its water wells up in a number of springs on the lake shore. Craters and volcanoes dominate the landscape. Several famous volcanoes are in the vicinity such as Hverfjall (Hverfell), Krafla and the Threngslaborgir crater row . Volcanic activity in the region gives rare insight into the process of continental drift. Many strange lava formations occur, Dimmuborgir and Höfdi being the most famous ones, also the pseudocrates (rootless vents) which are characteristic for the lake shore. The lake itself and its outflow the River Laxá is the most fertile freshwater system in Iceland. The bird life and fishing (including Atlantic Salmon) is extremely rich. Owing to the position of Iceland between two continents and on the border between the arctic and boreal ecozones the species composition of the biota is unique. The richness is based on phosphate-rich groundwater, relatively high insolation and optimal water depth for aquatic plants and waterfowl. Fishing and harvesting of duck eggs has always been important for the local household. Hydro- and geothermal power extraction as well as mining activities are currently the main threats to the landscape and ecology of the area. The area attracts large numbers of tourists. The local nature undergoes substantial changes because of soil erosion, volcanic activity, mining, geothermal power utilization, agriculture, changes in grazing regime, structures for communication and other building activities. The area is a protected nature reserve, managed by the Environment and Food Agency of Iceland , backed up by scientific information from the Myvatn Research Station. The Myvatn Research Station The Myvatn Research Station is a research institute focusing on Lake Mývatn and the outflowing river Laxá and their water catchment, with the overall aims of understanding and foreseeing changes in the ecosystem and its surroundings. Monitoring of the lake biota The overall aim of monitoring is to follow trends in the biota in order to detect undesired changes that may be caused by human activities and call for management actions. The monitoring is based on simple, well tested and ecologically meaningful methods that tackle various levels of the foodweb to maximize interpretability. Most monitoring projects are backed up by focused short-term research projects and are designed to yield usable data for scientific publications. The monitoring is carried out in cooperation with the University of Iceland, University of Wisconsin (USA), the Nature Center of North-East Iceland, the Institute of Freshwater Fisheries, and the Hólar College. Monitoring of other areas For comparative purpose the Myvatn Research Station is actively engaged in monitoring of two other wetland areas in North Iceland, those of Svartárvatn and Svarfadardalur. Food-web research The monitoring has revealed decadal fluctuations in the food web that have generated a lot of interest. Our research has focused on the potential drivers of the fluctuations, especially the interaction between the midge larvae and their food organisms (diatoms). We also do research on the effect of fluctuations in the populations of food organisms (midges and crustaceans) on the population dynamics of the vertebrates feeding on them (fish and waterfowl). Palaeoenvironment There is also an emphasis on long term palaeorecords of the lake and terrestrial ecosystems, including human impact. The research station organises, carries out or supports research on the palaeoenvironment of Lake Mývatn and the surrounding landscape. The main projects include (1) mapping of Viking Age turf wall systems revealing land division and management in the early days of Iceland’s history; (2) mapping and dating of charcoal pits and other features related to deforestation in the medieval period; (3) detailed reconstruction of the lake biota of Mývatn from remains in the lake sediment; (4) archaeological excavation of a midden, covering the whole historical period (870 to present) revealing the history of human use of the local resources; (5) historical documents of wildlife abundance. All this research is carried out in collaboration with a number of universities in the US., the UK and Scandinavia.
MRI's activities are organized into three main sections: Environment Section, Resources Section and Fisheries Advisory Section. Marine Environment Section: A large part of the sections work deals with environmental conditions (nutrients, temperature, salinity) in the sea, marine geology, and the ecology of algae, zooplankton, fish larvae, fish juveniles, and benthos. Amongst the larger projects undertaken within the Environment Section are investigations on currents using satellite monitored drifters and other modern technology, assessment of primary productivity, secondary productivity, overwintering and spring spawning of zooplankton, and studies on spawning of the most important exploited fish stocks. Marine Resources Section: Investigations are undertaken on the exploited stocks of fish, crustaceans, mollusks and marine mammals. The major part of the work involves estimating stock sizes and the total allowable catch (TAC) for each stock. Examples of some large projects within the Marine Resources Section are annual ground fish surveys covering the shelf area around Iceland and surveys for assessing inshore and deep‐water shrimp, lobster, and scallop stocks. The pelagic stocks of capelin and herring are also monitored annually in extensive research surveys using acoustic methods. Further, in recent years an extensive program concentrating on multi‐species interactions of exploited stocks in Icelandic waters has also been carried out. A designated project for improving understanding of the dynamics of the ecosystem deep north of Iceland has been conducted in recent years. The Fisheries Advisory Section: The Fisheries Advisory Section scrutinizes stock assessments and prepares the formal advice on TAC´s and sustainable fishing strategies for the government. Supporting departments: Important supporting departments are, the Electronic Department and the Fisheries Library. The Electronic Department supervises installation, testing and maintenance of research instruments. The Fisheries Library collects books and periodicals in all fields of marine sciences and publishes the MRI report series. 20 SAON: Inventory on Monitoring Networks Iceland Main gaps: Not specified Network type: ‐ Thematic observations ‐ Field stations ‐ Community based observations