Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 1 - 2 of 2
1. GeoBasis Disko

The GeoBasis Disko monitoring program started in 2017 as a part of the cross disciplinary Greenland Environmental Monitoring (GEM) program. GeoBasis Disko is an integrated part of the GeoBasis program, following the same standards as in Nuuk and Zackenberg (two other GEM sites) and largely focusing on the same parameters and methodologies. GeoBasis Disko is finaced by Danish Ministry of Energy, Utilities and Climate.

A close collaboration and synergy with Arctic Station that is manned year round makes it possible to collect and carry out measurements also during winter.As location Qeqertarsuaq on the south coast of the Disko island, represent a Greenlandic west coast climate, with annual mean temperatures just below 0°C, with discontinuous permafrost, and as such remarkably different from the two existing GEM sites. Further, the Disko bay area is highly interesting from a socioeconomic perspective due its high population and active fishery industry, and as one of the most popular tourist destinations in Greenland.

The primary objective of GeoBasis Disko is to establish baseline knowledge on the dynamics of fundamental abiotic terrestrial parameters within the environment/ecosystem around Arctic Station. This is done through a long term collection of data that includes the following sub-topics;

  • Snow properties; including spatial and temporal variation in snow cover, depth and density.
  • Soil properties; spatially distributed monitoring of key soil parameters such as temperature, moisture, and concentration of nutrient ions
  • Meteorology; monitoring of essential meteorological variables across various surface types and elevations.
  • Gas Flux monitoring; plot and landscape scale flux monitoring of CO2, H2O and energy in wet and dry ecosystems.
  • Hydrology; monitoring of seasonal variation in river water discharge, chemistry and suspended sediment.
  • Geomorphology; monitoring of shorelines, coastal cliff foots and cross-shore profiles.

GeoBasis focuses on selected abiotic parameters in order to describe the state of Arctic terrestrial environments and their potential feedback effects in a changing climate. As such, inter-annual variation and long-term trends are of paramount importance.

 

 

Active layer Arctic CO2 gas exchange Digital camera Energy Balance freshwater geomorphology Hydrology monitoring riverine transport Sea ice snow cover Soil water suspended solids terrestrial ecosystem
2. Detection of spatial, temporal, and spectral surface changes in the Ny-Ålesund area 79 N, Svalbard, using a low cost multispectral camera in combination with spectroradiometer measurements.

Changes in surface reflection at the arctic tundra at Ny-Ålesund, Svalbard (79 N) were monitored during the melting season 2002 using a low cost multispectral digital camera with spectral channels similar to channels 2, 3, and 4 of the Landsat Thematic Mapper satellite sensor. The camera was placed 474 m above sea level at the Zeppelin Mountain Research Station and was programmed to take an image automatically every day at solar noon. To achieve areal consistency in the images (which is necessary for mapping purposes) the images were geometrically rectified into multispectral digital orthophotos. In contrast to satellite images with high spatial resolution the orthophotos provide data with high spatial and high temporal resolution at low cost. The study area covers approximately 2 km2 and when free of snow, it mainly consists of typical high arctic tundra with patchy vegetation and bare soil in between. The spectral information in the images was used to divide the rectified images into maps representing different surface classes (including three subclasses of snow). By combining classified image data and ground measurements of surface reflectance, a model to produce daily maps of surface albedo was developed. The model takes into account that snow-albedo decreases as the snow pack ages; and that the albedo decreases very rapidly when the snow pack is shallow enough (20-30 cm) to let surface reflectance get influenced by the underlying ground. Maps representing days with no image data (due to bad weather conditions) were derived using interpolation between pixels with equal geographical coordinates. The time series of modeled albedo-maps shows that the time it takes for the albedo to get from 80% to bare ground levels varies from less than 10 days in areas near the coast or in the Ny-Ålesund settlement till more than 70 days in areas with large snow accumulations. For the entire study area the mean length of the 2002 melting period was 28.3 days with a standard deviation of 15.1 days. Finally, the duration of the snowmelt season at a location where it is measured routinely, was calculated to 23 days, which is very close to what is the average for the last two decades.

Digital camera Hydrography Mapping Geophysics Climate variability Orthophotograph Spatial trends Remote sensing Orthophoto Modelling Arctic GIS Spectral Temporal trends Ecosystems