The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
The objective of the station is to facilitate ecosystem research in the High Arctic. According to the framework programme of Zackenberg Ecological Research Operations (ZERO) this includes: - Basic quantitative documentation of ecosystem structure and processes; - Baseline studies of intrinsic short-term and long-term variations in ecosystem functions; - Retrospective analyses of organic and inorganic material to detect past ecosystem changes; - Experimental studies enabling predictions of ecosystem responses to Global Change. The programme is coordinated with Nuuk Ecological Research Operations (see below) within the Framework of Greenland Ecosystem Monitoring (GEM). Main gaps: Winter dynamics
The objective is to allow comparative studies of ecosystem dynamics in relation to climate variability and change in respectively a high arctic and low arctic setting as Nuuk Basic comprises the same components as Zackenberg. According to the framework programme of Zackenberg Ecological Research Operations (ZERO) this includes: - Basic quantitative documentation of ecosystem structure and processes; - Baseline studies of intrinsic short-term and long-term variations in ecosystem functions; - Retrospective analyses of organic and inorganic material to detect past ecosystem changes; - Experimental studies enabling predictions of ecosystem responses to Global Change. The programme is coordinated with Zackenberg Ecological Research Operations (see above) within the Framework of Greenland Ecosystem Monitoring (GEM). Main gaps: Winter dynamics
In 2013 a new ecosystem monitoring programme “DiskoBasis” was initiated at Arctic Station on Disko Island, Greenland. The project is partly funded by the Danish Energy Agency. The primary objective of DiskoBasis is to establish baseline knowledge on the dynamics of fundamental physical parameters within the environment/ecosystem around Arctic Station. This initiative extends and complements the existing monitoring carried out at Arctic Station by including several new activities –especially within the terrestrial and hydrological/fluvial field. DiskoBasis include collection of data in the following sub-topics; • Gas flux, meteorology and energy balance • Snow, ice and permafrost • Soil and soil water chemistry • Vegetation phenology • Hydrology -River water discharge and chemistry • Limnology -Lake water chemistry • Marine -Sea water chemistry
Fresh water quality monitoring program is designed to collect long term water quality data from lakes and rivers. It serves EU obligated data collection among other interests. The data is used to detect variation in time in the measured variables and to assess the physiological and chemical state of the water body. The program is managed by the Finnish Environment Institute (SYKE). Regional centres for economic development, transport and the environment are responsible for the field work needed for maintaining the monitoring stations. Monitoring frequency varies between locations from annual to once in three, six or 12 years.
Monitoring climatological and hydrological parameters in a low arctic environment.
National Environmental Monitoring in Sweden in the "Air" programme. The objective of the project is to follow climate-changing gases and particles and which effects they could have on the climate of earth. To understand and assess the human effect on the climate, regionally and globally, the atmospheric aerosols and greenhouse gases are monitored. The project aims follow: (i) detecting long-term trends in the carbon dioxide level, as well as trends in the amount or composition of aerosols in the background atmosphere; (ii) provide a basis to study the processes that control the aerosol life cycle from their formation through aging and transformation, until being removed from the atmosphere; (iii) provide a basis to study the processes (sources, sinks, and transport pathways) that control the level of carbon dioxide in the atmosphere; (iv) contribute to the global network of stations that perform continous measurements of atmospheric particles and trace gases to determine their effect on the earths radiation balance and interaction with clouds and climate.
National Environmental Monitoring in Sweden in "Air" programme and sub-programme "the thickness of the ozon layer". The project follows changes in the thickness of the ozone layer in the atmosphere over Sweden.
Arctic study of trophospheric aerosol, clouds and radiation
The main objective of the facility is to enhance the international scientific co-operation at the seven Finnish research stations and to offer a very attractive and unique place for multidisciplinary environmental and atmospheric research in the most arctic region of the European Union. Factors such as, arctic-subarctic and alpine-subalpine environment, northern populations, arctic winters with snow, changes in the Earth's electromagnetic environment due to external disturbances and exceptionally long series of observations of many ecological and atmospheric variables should interest new users.
At present, Sweden has 4 integrated monitoring (IM) sites that are part of a European network on integrated monitoring with an extensive measurement program. One of these sites, Gammtratten, situated in central Västerbotten, monitors several variables. This program is part of the International Cooperative Programme (ICP) on Integrated Monitoring (IM) of Air Pollution Effects on Ecosystems In Sweden there are three IM-sites, out of which Gammtratten in northern Sweden is one. The IM program at Gammtratten is performed by a consortium including IVL, SGU and SLU-EA. Basically there are three types of monitoring at the IM-sites, viz. Climatic, Chemical and Biological observations. Below is a list of the different analysis programs Air Concentration: SO2, NO2 Bulk deposition: pH, Cond, NO3-N, NH4-N, SO4-S, CL, Ca, Mg, Na, K, (Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As) Throughfall: pH, Cond, NO3-N, NH4-N, SO4-S, CL, Ca, Mg, Na, K, (Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As) Soil water: pH, Cond, tot-N, org-N, NO3-N, NH4-N, Tot-P, PO4-P, DOC, SO4-S, CL, Alk, Ca, Mg, Na, K, Al, Al-tot, Al-org, Al-inorg, Fe, Mn, Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As Groundwater: All years: pH, Cond, Si, NO3-N+NO2-N, NH4-N, PO4-P, TOC, SO4-S, CL, Alk/acidity, Ca, Mg, Na, K, Al, Fe, Mn, Cu, Pb, Zn, Cd, and some years also Hg, Metyl-Hg, Cr, Ni, Co, V, As Stream water: All years pH, Cond, NO3-N, NH4-N, PO4-P, TOC, SO4-S, CL, Alk/acidity, tot-N, tot-C, Ca, Mg, Na, K, Al, Fe, Mn, runoff volume and some years also Hg, Metyl-Hg, Cu, Pb, Zn, Cd and labile Al. Soil chemistry: pH in water extracts, exchange acidity, exchangeable Ca, Mg, Na, K, Al, Mn, and Fe, base saturation and total content of C, N, P, S, Cu, Zn, Pb, Cd and Hg Litter fall: Amount of litter (dw per unit area), total P, C, N, and S, K, Ca, Mg, Na, Al, Mn, Fe and during special years also Cu, Zn, Pb, Cd, Hg Litter decomp.: Dry weight loss from standard needles of Scots pine Soil respiration: CO2 -evolution per hour at 20oC, pH, Pb, Cd, Hg in OF-layer Understorey veg.: Field vegetation: Species, coverage, fertility, trees: speecies, coordinates, dbh, heiight, vitality. Down logs and stumps: species, dbh, degree of decomposition Needle chemistry: Total-P, tot-C, tot-N, and tot-S, K, Ca, Mg, Na, Al, Mn, Fe, Cu, Zn, Pb, Cd, Hg, arginin Biomass: Biomass, tot-C, tot-N, tot-P, K, Ca, Mg, Fe, Mn, Zn, Cu, B Forest injuries: Needle loss, dicolouring of needles, other injuries, tree class Simulated water balance: Precipitation, Evaporation, Runoff, Soil water, Snow Network type: integrated monitoring
1. The WMO facilitates worldwide cooperation in the establishment of networks of stations for the making of meteorological observations as well as hydrological and other geophysical observations related to meteorology. Observing stations are operated by WMO Members according to agreed standards and recommended practices described in the WMO Regulatory Material, such as Technical regulations, WMO-No. 49 and its Annexes.
2. The WMO requirements for observational data are generally divided into three categories: global, regional and national. For example, surface synoptic stations are expected to report every six hours for global exchange and every three hours for regional exchange, however with higher frequency on bilateral and multilateral arrangements. The details of the observational programmes provided by all stations operated by WMO Members are given in the WMO Observing Systems Capability Analysis and Review Tool (OSCAR) and available on the WMO website at https://oscar.wmo.int/OSCAR/index.html#/.
3. The approved operational procedures and practices are given in the regularly updated Manual on the Global Observing System (WMO-No. 544), and the Manual on the WMO Integrated Global Observing System (WMO-No. 1160) available also on the WMO website at http://www.wmo.int/pages/prog/www/OSY/Manuals_GOS.html and http://www.wmo.int/pages/prog/www/wigos/documents/WIGOS-RM/1160_en.pdf, respectively.
4. Under the Global Observing System of the World Weather Watch Programme, WMO Members operating stations in the Arctic Monitoring and Assessment Programme (AMAP) area (essentially includes the terrestrial and marine areas north of the Arctic Circle (66°32N), and north of 62°N in Asia and 60°N in North America, modified to include the marine areas north of the Aleutian chain, Hudson Bay, and parts of the North Atlantic Ocean including the Labrador Sea), contribute to the implementation of the observational programme by operating 336 surface Regional Basic Synoptic and 156 Regional Basic Climatological stations. A detailed infomration is available through WMO OSCAR: https://oscar.wmo.int/OSCAR/index.html#/.
Aerosols, Clouds, and Trace gases Research InfraStructure - ACTRIS is a research infrastructure on the ESFRI roadmap from March 2016. ACTRIS is currently supported by the European Commission Horizon 2020 Research and Innovation Framework Programme (H2020-INFRAIA-2014-2015) from 1 May 2015 to 30 April 2019.
The objectives of ACTRIS Research Infrastructure
Detecting changes and trends in atmospheric composition and understanding their impact on the stratosphere and upper troposphere is necessary for establishing the scientific links and feedbacks between climate change and atmospheric composition.
The main objective is to quantify the levels of air pollution in the artctic, and to document any changes in the exposures. It includes the necessary components to address impacts on ecosystems, human health, materials and climate change.
The main mission of the International Arctic Systems for Observing the Atmosphere (IASOA) is coordination of atmospheric data collection at existing and newly established intensive Arctic atmospheric observatories. Data of interest to the IASOA consortium include measurements of standard meteorology, greenhouse gases, atmospheric radiation, clouds, pollutants, chemistry, aerosols, and surface energy balances. These measurements support studies of Arctic climate change attribution (why things are changing), not just trends (how things are changing). IASOA is responsive to growing evidence that the earth system may be approaching environmentally critical thresholds within decadal time scales. The information from IASOA will not only enhance scientific understanding but will also support decisions by the global community regarding climate change mitigation and adaptation strategies. Main gaps: Not all observatories are members of established global networks such as GAW and BSRN. It is recommended that IASOA observatories that are not members of these global networks be evaluated for potential membership and that roadblocks to membership be investigated. Other types of measurement gaps include, but are not limited to: (1) Radar-lidar pairs at each observatory to assess cloud properties; (2) Flux towers at each observatory for methane and CO2 fluxes; (3) Aerosol measurements at each observatory; and (4) Surface and upper air ozone measurements at each observatory. Network type: Predominantly atmospheric measurements.
GAW serves as an early warning system to detect further changes in atmospheric concentrations of greenhouse gases and changes in the ozone layer, and in the long-range transport of pollutants, including acidity and toxicity of rain as well as the atmospheric burden of aerosols.
Hydrometeorological monitoring program produces real time information on precipitation and snow water equivalent. Information is utilized in modeling and forecasting floods and snow load. As part of the program, information of evaporation is produced with WMO standards. The program is coordinated by Finnish Environment Institute (SYKE). Finnish meteorological institute and Lapland regional centre for economic development, transport and the environment manage measurements and field work.
Hydrological monitoring aims produce real time information of water level and discharge, ice thickness including freeze-up and break-up in winter from a network of monitoring stations. Monitoring data is utilized in water resource planning, water management and flood damage prevention. Monitoring is coordinated by Finnish Environmental Institute (SYKE).
Monitoring of the water quality reflecting long-range transboundary air pollution including acidifying compounds, metals and POPs, and climatic change. Part of the sites are also including in biological monitoring. Monitoring sites are the most upland lakes and they are not under any significant human impact. Information is distributed to the UN Convention on Long-range Transboundary Air Pollution. Monitoring is managed by Finnish Environmental Institute (SYKE).
Monitoring follows groundwater level and quality as well as changes in soil humidity and frost depth in winter.
Long-term Obs. Site. Super-sites、experiment-sites Traverse Obs. Line