The purpose of the Sustaining Arctic Observing Networks (SAON) is to support and strengthen the development of multinational engagement for sustained and coordinated pan-Arctic observing and data sharing systems. SAON was initiated by the Arctic Council and the International Arctic Science Committee, and was established by the 2011 Ministerial Meeting in Nuuk.
The SAON inventory builds on a survey circulated in the community at the inception of the activity. This database is continously updated and maintained, and contains projects, activities, networks and programmes related to environmental observation in the circum-polar Arctic.
Other catalogs through this service are AMAP, ENVINET and SEARCH, or refer to the full list of projects/activities.
To edit or add records to any of the catalogs, log in or create an account.
The overall goal of AON is to obtain data that will support scientific investigations of Arctic environmental system change. The observing objectives are to: 1. Maintain science-driven observations of environmental system changes that are already underway; 2. Deploy new, science-driven observing systems and be prepared for detection of future environmental system change; 3. Develop observing data sets that will contribute to (a) the understanding of Arctic environmental system change (via analysis, synthesis and modelling) and its connections to the global system, and (b) improved prediction of future Arctic environmental system change and its connections to the global system. Main gaps: Understanding Change and Responding to Change panels, has formed an AON Design and Implementation (ADI) Task Force. Composed of Arctic and non-Arctic scientists with experience and expertise in scientific observing and observing system operation and design, the goal of the task force is to provide advice to the scientific community and NSF on observing system/network design options that are available for identifying gaps that hinder scientific understanding of Arctic environmental system change. The task force will hold two workshops and address two main objectives: (1) evaluate the current SEARCH science questions and observing priorities, and recommend new priorities in the light of the environmental system changes that have occurred since 2005; and (2) evaluate observing system/network design methods, including pilot projects and small-scale tests. A publicly available report will be released in summer 2010. It is anticipated that the report will be of interest to the broader Arctic science community, the governments of the Arctic countries and other countries, NGOs and numerous stakeholders.
Observe changes in the ecosystem, fluxes of heat, salt, nutrients, CO2, and methane from the seafloor to the atmosphere above, as a function of changing climate in the Pacific Arctic region from the Bering Strait north to the high Arctic. Main gaps: So far unable to go far into the ice for investigation, although the geographical scope of the RUSALCA mission increased in 2009 because of the reduction of sea ice cover. (we were able to reach a northernmost site and to sample as far north as 77°30’N.
The NCOP collects, analyzes, and disseminates observations and predictions of tidal currents for over 2,700 locations throughout the United States. The NCOP conducts annual tidal current surveys in various locations which deploy current meters for 30-90 days to acquire enough data to generate accurate tidal current predictions. Main gaps: NOAA maintains tidal current predictions at approximately 2,750 locations. However, there are little historical data north of the Aleutian chain, and those data are very old.
The NWLON is a network of long term stations whose fundamental purpose is to provide vertical control (tidal datums) that support a host of national requirements. In addition, the NWLON collects continuous water level data and provides observations and derived data products that support: marine transportation and navigation ( hydrographic charting surveys, shoreline mapping surveys, tide predictions, forecast water levels, real time observations, dredging projects, hazardous material spill response); global sea level rise studies, storm surge and tsunami detection and warnings, marine boundary determination (federal/state, state/private, state/state), coastal zone management activities, ecosystem restoration, and effective marine spatial planning. Main gaps: Gap analysis report completed in FY2008 identifying gaps based primarily on providing vertical (tidal datum) control. Largest gaps in Arctic region – gaps in data and information in Bristol Bay, Bering Sea, Bering Strait, Chukchi Sea, and Beaufort Sea areas.
To provide real-time marine meteorological, oceanographic and geophysical observations in real-time to the World Meteorological Organization’s Global Telecommunications Service (GTS).
The Bering Sea is an extremely rich ecosystem providing almost half of the US catch of fish and shellfish. EcoFOCI has four moorings (M2, M4, M5 and M8), which are an important component in the observational system, monitoring changes in the ecosystem. Data are used by ecosystem managers, modellers (model validation), and scientists. They provide critical information on the spatial temperature structure, timing of phytoplankton blooms, cold pool and presence of marine mammals. Main gaps: Expanding instrumentation to measure ice thickness, nutrients, oxygen, PAR, zooplankton biovolume and atmospheric variables to all four of the mooring sites. Increase vertical resolution of nutrients. Expand measurements northward into the Chukchi and Beaufort Seas.
To develop a coastal and ocean observing system in the Alaska region that meets the needs of multiple stakeholders by (1) serving as a regional data center providing data integration and coordination; (2) identifying stakeholder and user priorities for ocean and coastal information; (4) working with federal, state and academic partners to fill those gaps, including by AOOS where appropriate. Main gaps: AOOS and the data center are statewide activities, but thus far, available funding has limited observations and models primarily the Gulf of Alaska.
Understanding the physical oceanography of the northeast Chukchi Sea through the collection of real time High Frequency Radar (HFR) surface current measurements from shore-based systems, deployment of sub-surface Acoustic Doppler Current Profilers (ADCP), and the use of Automated Underwater Vehicles (AUV). Providing oceanographic data sets for guiding the development and evaluation of ocean circulation, wave and oil spill trajectory models.
Track and analyze all bear/human conflicts for all circumpolar polar bear range states (countries). As a result of on-going and predicted future habitat loss, polar bears are expected to spend longer periods of time on land where they are susceptible to human disturbance. At the same time, human activity in coastal areas of the Arctic is increasing (e.g. oil and gas exploration, tourism) in conjunction with an increased number of nutritionally stressed bears occurring on land. The increasing trend of both polar bear and human use of coastal areas has the potential to result in increasing polar bear-human interactions. Harvest data indicates that defense of life kills have been increasing (USFWS unpublished data). To date, polar bear attacks have been rare but when they do occur, they evoke strong public reaction, especially for residents of communities within the range of polar bears. For sound management of polar bears to be implemented, and adequate protection afforded to people living, recreating, and working in polar bear country, it is imperative that polar bear managers assemble a database of critical information related to bear-human interactions. Interactions with humans may threaten polar bears by: (1) displacement from preferred habitats, such as denning, feeding and resting areas; (2) ingestion of or exposure to contaminants or toxic substances; (3) association of humans with food (food-conditioning) resulting in nuisance bears being killed due to safety concerns for local residents/workers. Polar bear managers can help maintain the current status of their polar bear populations by reducing lethal take of polar bears during bear-human interactions. To prevent escalating conflicts between polar bears and humans, bear-human interaction plans need to be developed and implemented. During the March 2009 Polar Bear Range States Meeting in Tromso, Norway the U.S. was tasked with taking the lead on developing a polar bear / human interaction initiative to address the anticipated future increase in interactions due to climate change. Tor Punsvik, Environmental Advisor, Office of The Governor of Svalbard, Norway and Dr. Terry D. DeBruyn, Polar Bear Project Leader, FWS, Alaska were requested by the Range States to develop a polar bear/human interaction database for the next Range States Meeting in Canada in 2011. It is anticipated that a draft database, populated with data from both the U.S. and Norway, will be ready by November 2009 for testing and comment by the Polar Bear Specialist Group (PBSG). The draft database will be distributed to PBSG members, comment sought, and a request made that members populate the database with pertinent polar bear/human incidents (of primary interest, initially, are records from each country that relate to the use of bear spray and fatalities (both bear and human) resulting from bear-human interactions). At a subsequent meeting of U.S. and Norway in spring 2010, the database will be updated and thereafter redistributed to the PBSG and Range State members. It is anticipated that data from all Polar Bear Range States will then be available for consolidation and validation in winter 2010 and ready to present at the Range States meeting in 2011. To ensure the success of the project, partnering with various agencies and pertinent groups in the range state countries will occur. The Polar Bear Range States parties agree on the need to develop comprehensive strategies to manage bear-human conflicts. Some existing strategies include active deterrence, reduction of attractants, and community education and outreach. Expertise developed for management of other bear species should be consulted in the development of strategies specific to polar bears. The parties agreed to exchange experiences with management of bear-human interactions. Two specific opportunities were identified to develop bear-human interaction strategies: the upcoming Bear-human Workshop in November 2009 in Canmore, Alberta, Canada and the Polar Bear Aversive Conditioning Workshop planned to be held in Alaska in 2010. The Polar Bear-Human Information Management System (PBHIMS) has been developed to standardize the collection of polar bear data across the Range States. This system provides a user-friendly data entry interface and the ability to analyze the collected data. Data stored in the system includes bear-human conflicts, bear observations, bear harvests, and bear natural history data. Scanned images of the original bear forms, narratives, reports, and photos can be attached to each incident to provide additional information that may not be captured in the system. Main gaps: Developed for use by USFWS; other range states are not using it yet.
NERI is reporting to the Global Runoff Data Centre (GRDC), based at the Bundesanstalt für Gewässerkunde (Federal Institute of Hydrology, BfG) in Koblenz, Germany, and operating under the auspices of the World Meteorological Organization (WMO). GTN-R is a GRDC contribution to the Implementation Plan for the Global Observing System for Climate and to GTN-H. Denmark is reporting 14 stations as shown in Table 5
The National Environmental Research Institute has the overall responsibility for surveillance of the Danish waters. Surveillance of fjords and coastal waters is carried our by the regional authorities, while NERI is responsible for mapping the open waters. All of the surveys are part of the Danish nationwide monitoring programme NOVANA All marine NOVANA data (regional and state) are collected annually in the national marine database, MADS, by NERI. For further reading and data see http://mads.dmu.dk . The Danish Institute for Fisheries Research carries out yearly surveys in Danish waters, primarily in the North Sea and the Baltic Sea. Relevant oceanographic parameters are measured and recorded for these areas. Furthermore, DMI is involved in the following projects: • Measurements of water transports across the Greenland-Scotland Ridge • Monitoring of the oceanographic conditions along West Greenland • Monitoring of the oceanographic conditions around the Faroe Islands.
In Denmark an extensive national network of tide gauges are operated jointly by DMI, the Royal Danish Administration for Navigation and Hydrography, local authorities and the Danish Coastal Authority. The network consists of 81 automatic stations. In Greenland a tide gauge station is operated by National Survey and Cadastre (KMS). Data are available from the responsible bodies.
Upper-air temperature Homogenized upper-air temperature analyses: extended MSU-equivalent temperature record, new record for upper-troposphere and lower-stratosphere temperature using data from radio occultation, temperature analyses obtained from reanalyses. Water vapour Total column water vapour over the ocean and over land, tropospheric and lower stratospheric profiles of water vapour. Ozone Profiles and total column of ozone.
The ASAP in its present form began in the mid1980s. The programme objective is to record profile data from the upper air strata in ocean areas using automated sounding systems carried on board merchant ships plying regular ocean routes. Several national meteorological services operate ASAP units and the collected data are made available in real time via GTS. ASAP data are archived alongside other radio sounding data by many national meteorological services. ASAP is an important contribution to both the WWW and GCOS. Today most of the soundings are from the North Atlantic and north-west Pacific, but the programme is expanding to other ocean basins through a new, co-operative World-wide Recurring ASAP Project (WRAP). Denmark operates two ASAP units mounted on ships plying fixed routes from Denmark to Greenland. The European meteorological cooperation EUMETNET started a special E-ASAP programme in December 2000. The programme aims at joint operation of the ASAP programmes under the European meteorological institutes.
Denmark has a network for the collection of sea temperatures at 13 coastal stations around Denmark. The stations are operated by DMI, the Royal Danish Administration for Navigation and Hydrography, the Danish Coastal Authority, and local authorities respectively. Data are available from each of the responsible bodies. Furthermore, sea surface temperatures are monitored using satellites, and DMI prepares daily maps for the North Sea and Baltic Sea areas.
The main objective is to monitor physical parameters (salinity and temperature). Network type: Oceanographic (CTD sampling)
To acquire atmospheric data in support of both the prediction and detection of severe weather and of climate trend and variability research. This serves a broad range of users including researchers, policy makers, and service providers. Main gaps: Long-term, atmospheric monitoring in the North poses a significant challenge both operationally (e.g. in-situ automated snowfall measurements) and financially (charterd flights for maintenance and calibration).Most monitoring in the North is limited to populated areas. Attempts to develop an AMDAR capacity out of First Air and Canadian North fleets failed due to economical and technical difficulties. As demonstrated through impact studies, benefits of AMDAR in the North would be tremendous, however would require acquisition and deployment of specialized sensing packages such as TAMDAR (which includes measurements of relative humidity), development of datalink capacity through satellite communications (e.g. Iridium), and upgrading some aircraft systems when possible, especially the aircraft navigation systems. Network type: Atmospheric observing stations over land and sea composed of: - Surface Weather and Climate Network: o In-situ land stations comprising both Hourly stations and Daily Climate observations - Marine Networks: o Buoys (moored and drifting) o Ships: Automatic Volunteer Observing System - Upper Air Network: o In situ (radiosonde) o In situ Commercial Aircraft (AMDAR)
Is updated every day during the season, 2002-2007
[not specified]
Temperature, Salinity, pH, Oxygen, Hydrogensulphide, Phosphate, Total-Phosphorous, Nitrite, Nitrate, Ammonium, Total-Nitrogen, Alkalinity, Silicon, PON, POC, and Chlorophyll-a Zooplankton, Phytoplankton, Bacterial plankton, Zoobentos, Phytobentos, Seal, Sea Eagle, Amphipod, Sedimentation, Primary production, Klorophyll