SAON Inventory

SAON Inventory

The purpose of the Sustaining Arctic Observing Networks (SAON) is to support and strengthen the development of multinational engagement for sustained and coordinated pan-Arctic observing and data sharing systems. SAON was initiated by the Arctic Council and the International Arctic Science Committee, and was established by the 2011 Ministerial Meeting in Nuuk.

The SAON inventory builds on a survey circulated in the community at the inception of the activity. This database is continously updated and maintained, and contains projects, activities, networks and programmes related to environmental observation in the circum-polar Arctic.

 

Other catalogs through this service are AMAP, ENVINET and SEARCH, or refer to the full list of projects/activities.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 20 of 26 Next
1. Local network of pollution control in Barentsburg (Spitsbergen)

Local monitoring, Barentsburg: regular sampling, twice a year

Pollution sources
2. Veðurstofa Ísland ‐ Icelandic Meteorological Office, IMO (IMO)

The main purpose of IMO is to contribute towards increased security and efficiency in society by: • Monitoring, analyzing, interpreting, informing, giving advice and counsel, providing warnings and forecasts and where possible, predicting natural processes and natural hazards; • issuing public and aviation alerts about impending natural hazards, such as volcanic ash, extreme weather, avalanching, landslides and flooding; • conducting research on the physics of air, land and sea, specifically in the fields of hydrology, glaciology, climatology, seismology and volcanology; • maintaining high quality service and efficiency in providing information in the interest of economy, of security affairs, of sustainable usage of natural resources and with regard to other needs of the public; • ensuring the accumulation and preservation of data and knowledge regarding the long-term development of natural processes such as climate, glacier changes, crustal movements and other environmental matters that fall under IMO‘s responsibility. IMO has a long-term advisory role with the Icelandic Civil Defense and issues public alerts about impending natural hazards. The institute participates in international weather and aviation alert systems, such as London Volcanic Ash Advisory Centre (VAAC), the Icelandic Aviation Oceanic Area Control Center (OAC Reykjavík) and the European alarm system for extreme weather, Meteoalarm. Network type: Thematic observations in 6 different fields

Geology Geophysics Pollution sources Sea ice Oceanography Atmosphere Ecosystems
3. National Research Council (CNR) (CNR)

Italy’s leading national research institution, the CNR has been supporting research activity at Ny-Ålesund since 1997, when the scientific station “Dirigibile Italia” was acquired. This infrastructure supports Arctic research conducted by the national research community. In 2008, it was improved through the construction of the Amundsen-Nobile Climate Change Tower and the actikvity largely enlarged with the Climate Change Tower Integrated Project (CCT-IP - www.isac.cnr.it/~radiclim/CCTower). Scientific cooperation, particularly focused on atmospheric science including pollutants distribution and ozone studies, on oceanography and on marine biology and biodiversity was developed by CNR scientists in particular with NPI and AWI; CNR is coordinating actions (EU-GMOS project) to improve and implement the observational system related to mercury. CNR is also involved in the SIOS preparatory phase project, and in Italy it is engaged to coordinate interested Italian expertises in a common scientific plan and actively promote Italian participation to SIOS final multidisciplinary platform. In the years to come, CNR intends to promote the improvement of research activity and to reinforce international cooperation of the Italian research groups, and to provide a significant contribution to the observational system in the Arctic, following the lines recommended by SAON. Together with the improvement/development of a supersite at Ny-Ålesund and large contribution to SIOS, CNR will operate to contribute/sustain thematic networks (Polar-AOD for aerosol and GMOS for mercury leading from CNR).

Pollution sources Environmental management Oceanography Atmosphere Ecosystems
4. Observation of Greenhouse Gases using Aircraft and Tower Network in Siberia

Cooperation with: ・Institute of Atmospheric Optics, Tomsk, Russia ・Permafrost Institute, Yakutsk, Russia ・Central Aerological Observatory, Moscow, Russia ・Institute of Microbiology, Moscow, Russia

Climate Pollution sources Atmosphere
5. Intensive forest monitoring sites of Finnish Forest Research Institute (Metla) (Intensive forest monitoring network)

The national program of intensive forest monitoring is managed by the Finnish Forest Research Institute (Metla). In 2011 five of the 18 Finnish intensive monitoring plots situated in Finnish Lapland (Fig. 5.1.: Sevettijärvi, Pallasjärvi and three plots in Kivalo). Finnish national intensive forest monitoring network is part of pan-European ICP Forests network of ca. 800 plots (http://icp-forests.net/page/level-ii). ICP Forests (the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests) operates under the UNECE Convention on Long-range Transboundary Air Pollution. These intensive monitoring plots were established in co-operation of ICP Forests and European Commission in mid 1990’s. European Commission co-financed forest monitoring under forest monitoring regulations until the end of 2006 when the Forest Focus regulation (EC No 2152 / 2003) expired. During 2009-2011 part of these intensive forest monitoring plots were included in Life+-project called “FutMon” (Further Development and Implementation of an EU-level Forest Monitoring System: http://www.futmon.org/). Monitoring is carried out following the manual of ICP Forests (http://icp-forests.net/page/icp-forests-manual) and the monitoring data is submitted once a year to the ICP Forests database in Hamburg. Every year Programme Coordinating Centre of ICP Forests publishes technical and executive reports on the condition of forests in Europe. ICP Forests monitoring activities provide information also for a number of criteria and indicators of sustainable forest management as defined by the Forest Europe Ministerial Conference on the Protection of Forests in Europe. Network type: National nation-wide monitoring

Pollution sources Environmental management Atmosphere Ecosystems
6. NPS Aerosols

NPS monitors aerosols at Denali National Park and Preserve (DNPP) to calculate and track visibility trends (1988 to present). The aerosol program is part of the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Wet deposi¬tion has been monitored at DNPP (Site ID AK03) since 1980 as part of the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). In order to estimate dry deposition at DNPP (Site DEN417), weekly concentrations of sulfur and nitrogen compounds have been measured since 1998 as part of the Clean Air Status and Trends Networks (CASTNet). UV-B radiation has been monitored at DNPP since 1997 as part of the EPA UV-B Monitoring Program. The NPS Western Air¬borne Contaminants Assessment Project (WACAP) is currently evaluating water, snow, sediments, willow bark, fish, and moose tissue in a number of western US and Alaska national parks, including DNPP, for the presence of metals (including mercury) and organic compounds.

Pollution sources
7. Health Behaviour in School-aged Children in Greenland (HBSC Greenland)

The HBSC network is a WHO supported research network on health and health behaviour in schoolaged children performing surveys every 4 years in 41 countries. The data are used in monitoring, research and health promotion. Network type: - Research network - Child health - Human & socio-economic - Location(s): Greenland and 40 other countries…..

Pollution sources Human health
8. Sweden radiation monitoring

The Swedish Radiation Safety Authority (SSM) has 32 measurement stations distributed across Sweden, of which 16 are situated north of 60°N (Table 6, #6.1). They mainly measure radiation from radioactive compounds on the soil surface and automatically sound the alarm if the radiation increases. Every seventh month, radioactivity is measured on the soil surface at 4 to 5 spots in every municipality to check eventual radiation changes and to retain knowledge at an acceptable level (Table 6, #6.2). Special programs monitor 137Cs in humans (whole body), reindeer, fish, moose, and roe deer (Table 6, #6.3). The main incentive for this is the remains from the Chernobyl accident in 1986.

Human health Pollution sources
9. Swedish health monitoring of metals

One focus of SEPA’s subprogram for human biological data concerns metals in human bodies (Table 4, #9.1). It includes studies on lead concentration in human blood, mercury in hair, and cadmium concentration in urine. Old hair samples have been collected and analyzed for mercury. Methyl mercury may damage the central nervous system, and at the fetal stage effects may occur already after low exposure. A study in Uppsala is investigating persistent organic compounds in breast milk. Concurrently, the young mothers answer a questionnaire, and hair samples are collected to analyze methyl mercury. Cadmium in urine is an indicator of the load on kidneys, and especially women with low iron storage have an elevated risk for increased cadmium uptake. A program on cadmium in women that started in Gothenburg, then expanded to Stockholm, Lund, and Umeå is under way. In 2007, a second round started in Gothenburg. A questionnaire is filled in concurrently with collection of a urine sample.

Pollution sources Human health
10. Biological Data – Organic Substances

Organic compounds, especially persistent organic pollutants (POP), are of special interest and are included in one of SEPA’s subprograms (Table 4, #9.2). The subprogram includes different groups in the population. On military enlistment, young men are tested for persistent organic compounds in the body. Mercury content is measured in high consumers of fish, and the concentration of flame retardants is measured in samples of breast milk from women who breast-feed. The National Food Administration stores important data from control of pesticides in vegetables, where more than 2 000 samples are taken per year and residues from more than 200 different pesticides are analyzed. To date, no data have been analyzed and reported from this material, but it will be done in the first phase of this SEPA subprogram. Sampling of breast milk will continue with the intent to monitor organic environmental pollutants. Already existing is a long time series on the concentration of flame retardants and PCB in breast milk. Concurrently, samples will be transferred to the environmental sample bank at the Swedish Museum of Natural History (NRM), which means that samples will be available for comparison in the future.

Pollution sources Human health
11. Air Pollutants – Exposition Studies

Studies of human exposure to cancer-inducing air pollutants (Table 4, #9.3) are being conducted in Gothenburg, Umeå, Stockholm, and other sites. The importance of smoking habits, traffic, and other potential sources will be determined for a better risk evaluation. Measurements will be conducted according to a rolling schedule, with one city at a time and a group of 40 randomly chosen people, 20 to 50 years of age. The background concentrations in air will be followed at the same time. Exposure to nitrogen dioxide is particularly severe during winter. An estimate of the number of people exposed to nitrogen dioxide concentrations in excess of current limits is performed every fifth year. An improved method of calculation, i.e. the urban model, has been used since winter 2006/2007. The urban model will also be used to calculate the number of people that are overexposed to particles.

Pollution sources Human health
12. Seal and Sea Eagle subprogram

The Seal and Sea Eagle subprogram (Table 4, #8.2.6) monitors marine top consumers as indicator species to assess harmful effects of environmental toxics. Hopefully, in the long run, the program will show that these species have natural reproduction, health, and population. At present the subprogram has no sampling network. In the Bothnian Bay, the Swedish Museum of Natural History (NRM) monitors grey seals, ringed seals, and European sea eagles. These observations will show the state and trends of population size, development, and health of seals and of reproduction, population size, and development of European sea eagles. The aim of early warning is to detect changes in reproduction, health, survival, and population trends that may result from changes in the marine environment.

Pollution sources Ecosystems
13. Integrated Coastal Fish Monitoring

The Integrated Coastal Fish Monitoring subprogram (Table 4, #8.2.5) documents the composition of the stationary fish community as well as the growth, general health situation, and reproduction success of perch (Perca fluviatilis) and burbot (Lota lota) as indicators of environmental toxics. Fish from one site close to Umeå is sent to Gothenburg University for analysis of biochemical, physiological, histological and pathogenic variables in perch.

Fish Pollution sources Ecosystems
14. Free Water Body subprogram

The Free Water Body subprogram (Table 4, #8.2.4) aims to describe the effects of primarily overfertilization by means of hydrographical, chemical, and biological methods. One part of the program collects samples as frequently as 18 to 25 times per year at a few sea and coastal stations. Another part collects samples only once per year, during winter, to map the extent of areas with low oxygen content and the size of the nutrient pool, which gives the prerequisites for algal bloom in spring.

Pollution sources Oceanography Ecosystems
15. Metals and Organic Environmental Pollutants subprogram

Metals and Organic Environmental Pollutants subprogram (Table 4, #8.2.3) will report mainly on environmental toxics in biota in the large sea basins, of which the Bothnian Bay and the Gulf of Bothnia are the farthest north. Sea mussels, fish, and bird eggs are collected and analyzed for the content of metals and organic toxics. The material is then stored at the Swedish Museum of Natural History (NRM) for possible later retrospective analyses.

Pollution sources Ecosystems
16. ICP Forest Program in Sweden

At present, Sweden has 4 integrated monitoring (IM) sites that are part of a European network on integrated monitoring with an extensive measurement program. One of these sites, Gammtratten, situated in central Västerbotten, monitors several variables (Table 4, #3.2). SGU conducts groundwater sampling at 3 of the sites. In total, 18 stations are sampled 4 times per year. A program for comprehensive information on the state of forests in Europe was launched 1985 in response to acid deposition and fear of forest decline. The program was named the European ICP-Forest Program (International Co-operative Program on Assessment and Monitoring of Air Pollution Effects on Forests operating under the UNECE Convention on Long-range Transboundary Air Pollution, Table 6, #5). ICP-Forest monitors forest conditions in Europe and operates at two levels of intensity. Level I is a systematic 16 km by 16 km transnational grid having around 6 000 observation plots in Europe. Level II is comprised of around 800 sites in selected forests throughout Europe with more intense observations. The Level I measurements consist of three parts: crown condition assessment, soil condition assessment, and foliar survey. The crown condition assessment includes the degree of defoliation, discoloring, and damage visible on trees. The soil condition assessment addresses possible nutrient imbalances caused by, e.g. acid deposition. The foliar survey assesses foliar nutrient concentrations, because changes in environmental conditions may affect foliar nutrient concentrations. The Swedish contribution is made by the national forest inventory (SLU-FRM), which estimates the degree of crown defoliation and discoloring on 700 permanent plots around the country. The Swedish Forest Agency (SST) organizes the Level II observational plots. They manage a program with more than 200 permanent plots throughout Sweden, on which they estimate forest vitality (several measures), forest growth, soil chemistry, and field vegetation. Of these plots, 100 are connected to the international network, and 20 are north of 60°N. Foliage chemistry is determined on 100 plots, deposition and soil water chemistry on 50 plots, air quality on 25 plots, and climate on 14 plots. The sampling intensity varies from once in 5 years to once per hour depending

Ecosystems Environmental management Pollution sources
17. Sweden Metals in moose

Samples in moose (Table 4, #3.4) from Norrbotten and Jämtland counties (and 3 counties in southern Sweden) have been analyzed every autumn since 1996. The Swedish Museum of Natural History (NRM) organizes this work and stores some of the material, and the Swedish Veterinary Institute (SVA) performs chemical analyses on some of the tissues. Hunting associations organize much of the field sampling. Analyses: As, Cs, Cd, Cr, Co, Cu, Pb, Mn, Hg, Mo, Ni, Se, Sr, V, Zn. 2007 screening of organic compounds Sites: Norrbotten, Jämtland, Western Götaland, Jönköping, and Kronoberg Counties Intensity: Each autumn since 1980 (Grimsö), else from 1996

Pollution sources Ecosystems
18. Sweden Metals in Reindeers

Metals in tissue samples from reindeer are analyzed at 3 sites along the mountain ridge once per year. The Swedish Museum of Natural History (NRM) organizes this work and stores some of the material, and the Swedish Veterinary Institute (SVA) performs chemical analyses on some of the tissues. Reindeer samples are gathered once per year in connection with sluaghter. The samples are stored by NRM and on some material the National Veterinary Institute (SVA) make analyses. The program is part of SEPA:s program for monitoring in the mountains Analyses: Al, Ca, Co, Cr, Cu, Fe, Mg, Mo, Ni, Pb, V, Zn, Hg every year, PCB, dioxiner, DDT 1/5yr Sampling sites: Abisko, Ammarnäs, Funäsdalen Intensity: 1/year, at slaughter

Pollution sources
19. Metals in Mosses

An alternative for metal deposition measurements is to analyze their abundance in mosses since metals bind strongly to cation exchange sites in them. The concentration of metals in mosses would therefore act as an index for metal deposition. It is also assumed that uptake of most water and dissolved substances comes directly from precipitation; even if it has been shown that capillary transport of dissolved metals may be substantial. A national inventory of metals in mosses takes place at 5-year intervals (Table 4, #1.11). The two-to-three last years growth is identified and collected for chemical analysis ICP-AES and ICP-MS (As, Cd, Hg) Metals are adsorbed by mosses and metal concentration in mosses are therefore seen as a proxy for metal deposition. Moss species: Pleurozium schreberi, Hylocomium splendens Analyzed metals: As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, V, Zn Sampling sites: More than 700 sites over Sweden Time period: 1/5 years, first report 1975 and last reported 2005.

Ecosystems Pollution sources
20. IRF ozone and other trace gases monitoring + aerosols + thin clouds + wind/structures + atmospheric composition + particle precipitation + ionosphere

The total column amount of ozone and other trace gases are measured with mm-wave instruments, FT-IR and DOAS spectrometers, at IRF in Kiruna (Table 6, #8.1). With the sun or moon as infrared light sources, FT-IR spectrometers can quantify the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC- 22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS. Together with Russian and Finnish institutes at the same latitude, IRF studies the stratospheric ozone and its dependence on polar atmospheric circulation and precipitation of charged particles. The ground-based instruments are also used to validate satellite measurements of vertical ozone distribution (Odin, SAGE III, and GOME). Aerosols and thin clouds are measured at IRF in Kiruna. For example, researchers use Lidars (Light Detection and Ranging) to measure polar stratospheric and noctilucent clouds. Winds and structures are measured with ESRAD MST radar at IRF in Kiruna. At IRF in Kiruna measurements are used to assess the physical and chemical state of the stratosphere and upper troposphere and the impact of changes on the global climate. Particle precipitation is measured by relative ionospheric opacity meters (riometers) at IRF in Kiruna. Riometers measure the absorption of cosmic noise at 30 and 38 MHz and provide information about particles with energies larger than 10 keV. The electron density of the ionosphere is measured by ionosonds and digisondes at IRF in Kiruna.

Pollution sources Environmental management Atmosphere