The purpose of the Sustaining Arctic Observing Networks (SAON) is to support and strengthen the development of multinational engagement for sustained and coordinated pan-Arctic observing and data sharing systems. SAON was initiated by the Arctic Council and the International Arctic Science Committee, and was established by the 2011 Ministerial Meeting in Nuuk.
The SAON inventory builds on a survey circulated in the community at the inception of the activity. This database is continously updated and maintained, and contains projects, activities, networks and programmes related to environmental observation in the circum-polar Arctic.
Other catalogs through this service are AMAP, ENVINET and SEARCH, or refer to the full list of projects/activities.
To edit or add records to any of the catalogs, log in or create an account.
To provide the data necessary for quantifying the dynamics of arctic ecosystems, i.e. at the two field sites at respectively Zackenberg (Northeast Greenland) and Nuuk (West Greenland) Main gaps: Winter dynamics
The objective of the station is to facilitate ecosystem research in the High Arctic. According to the framework programme of Zackenberg Ecological Research Operations (ZERO) this includes: - Basic quantitative documentation of ecosystem structure and processes; - Baseline studies of intrinsic short-term and long-term variations in ecosystem functions; - Retrospective analyses of organic and inorganic material to detect past ecosystem changes; - Experimental studies enabling predictions of ecosystem responses to Global Change. The programme is coordinated with Nuuk Ecological Research Operations (see below) within the Framework of Greenland Ecosystem Monitoring (GEM). Main gaps: Winter dynamics
The objective is to allow comparative studies of ecosystem dynamics in relation to climate variability and change in respectively a high arctic and low arctic setting as Nuuk Basic comprises the same components as Zackenberg. According to the framework programme of Zackenberg Ecological Research Operations (ZERO) this includes: - Basic quantitative documentation of ecosystem structure and processes; - Baseline studies of intrinsic short-term and long-term variations in ecosystem functions; - Retrospective analyses of organic and inorganic material to detect past ecosystem changes; - Experimental studies enabling predictions of ecosystem responses to Global Change. The programme is coordinated with Zackenberg Ecological Research Operations (see above) within the Framework of Greenland Ecosystem Monitoring (GEM). Main gaps: Winter dynamics
MOSJ (Environmental Monitoring of Svalbard and Jan Mayen) is an environmental monitoring system and part of the Government’s environmental monitoring in Norway. An important function is to provide a basis for seeing whether the political targets set for the development of the environment in the North are being attained
1. Monitor transport of oil and hazardous substances from all sources into Norwegian coastal and oceanic waters through modelling, calculations and measurements. 2. Monitor contaminant status in selected indicators (biota, sediments, water, air, acidification). 3. Collect samples for the Norwegian Environmental Sample Bank. 4. Supply data for the Norwegian Integrated Management Plans The programme is operated by Norwegian Institute for Water Research (NIVA) on behalf of NPCA in cooperation with Norwegian Institute of Air Research (NILU), Norwegian Institute of Marine Research (IMR), The National Institute of Nutrition and Seafood Research (NIFES) and Norwegian Radiation Protection Authority (NRPA). - Locations: Norwegian marine waters (see attached map). Main gaps: New stations/indicators/parameters will be included when needed in the integrated management plans
The first sampling for the soil and vegetation inventory of arable land was done in 1994-1995. The program covers arable land in Sweden and is designed to describe the state of Swedish arable land and the quality of the crop in relation to soil status, cultivation measures, and means of operation. At present soil sampling is made in 2000 fixed sampling points visited every 10th year.
At present, Sweden has 4 integrated monitoring (IM) sites that are part of a European network on integrated monitoring with an extensive measurement program. One of these sites, Gammtratten, situated in central Västerbotten, monitors several variables. This program is part of the International Cooperative Programme (ICP) on Integrated Monitoring (IM) of Air Pollution Effects on Ecosystems In Sweden there are three IM-sites, out of which Gammtratten in northern Sweden is one. The IM program at Gammtratten is performed by a consortium including IVL, SGU and SLU-EA. Basically there are three types of monitoring at the IM-sites, viz. Climatic, Chemical and Biological observations. Below is a list of the different analysis programs Air Concentration: SO2, NO2 Bulk deposition: pH, Cond, NO3-N, NH4-N, SO4-S, CL, Ca, Mg, Na, K, (Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As) Throughfall: pH, Cond, NO3-N, NH4-N, SO4-S, CL, Ca, Mg, Na, K, (Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As) Soil water: pH, Cond, tot-N, org-N, NO3-N, NH4-N, Tot-P, PO4-P, DOC, SO4-S, CL, Alk, Ca, Mg, Na, K, Al, Al-tot, Al-org, Al-inorg, Fe, Mn, Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As Groundwater: All years: pH, Cond, Si, NO3-N+NO2-N, NH4-N, PO4-P, TOC, SO4-S, CL, Alk/acidity, Ca, Mg, Na, K, Al, Fe, Mn, Cu, Pb, Zn, Cd, and some years also Hg, Metyl-Hg, Cr, Ni, Co, V, As Stream water: All years pH, Cond, NO3-N, NH4-N, PO4-P, TOC, SO4-S, CL, Alk/acidity, tot-N, tot-C, Ca, Mg, Na, K, Al, Fe, Mn, runoff volume and some years also Hg, Metyl-Hg, Cu, Pb, Zn, Cd and labile Al. Soil chemistry: pH in water extracts, exchange acidity, exchangeable Ca, Mg, Na, K, Al, Mn, and Fe, base saturation and total content of C, N, P, S, Cu, Zn, Pb, Cd and Hg Litter fall: Amount of litter (dw per unit area), total P, C, N, and S, K, Ca, Mg, Na, Al, Mn, Fe and during special years also Cu, Zn, Pb, Cd, Hg Litter decomp.: Dry weight loss from standard needles of Scots pine Soil respiration: CO2 -evolution per hour at 20oC, pH, Pb, Cd, Hg in OF-layer Understorey veg.: Field vegetation: Species, coverage, fertility, trees: speecies, coordinates, dbh, heiight, vitality. Down logs and stumps: species, dbh, degree of decomposition Needle chemistry: Total-P, tot-C, tot-N, and tot-S, K, Ca, Mg, Na, Al, Mn, Fe, Cu, Zn, Pb, Cd, Hg, arginin Biomass: Biomass, tot-C, tot-N, tot-P, K, Ca, Mg, Fe, Mn, Zn, Cu, B Forest injuries: Needle loss, dicolouring of needles, other injuries, tree class Simulated water balance: Precipitation, Evaporation, Runoff, Soil water, Snow Network type: integrated monitoring
The main objective is resource monitoring of Greenland Halibut.
To focus on the status of most of the large migratory Rangifer (caribou/reindeer) herds.
This mission of the North Slope Science Initiative is to improve the regulatory understanding of terrestrial, aquatic and marine ecosystems for consideration in the context of resource development activities and climate change. The vision of the North Slope Science Initiative is to identify those data and information needs management agencies and governments will need in the future to develope management scenarios using the best information and mitigation to conserve the environments of the North Slope
Zooplankton make essential links between producers and predators in marine ecosystems, so mediating in the CO2 exchange between atmosphere and ocean They can be indicators of climate variability, and changes in zooplankton species distribution and abundance may have cascading effects on food webs. West Spitsbergen Current is the main pathway of transport of Atlantic waters and biota into the Arctic Ocean and the Arctic shelf seas. West Spitsbergen Shelf coastal and fjordic waters, therefore, are natural experimental areas to study mechanisms by which the Atlantic and Arctic marine ecosystem interact, and to observe environmental changes caused by variability in climate. The main objectives of the zooplankton monitoring are: a) to study patterns and variability in composition and abundance in zooplankton of the West Spitsbergen Current and the West Spitsbergen fjords and coastal waters; b) to find out environmental factors responsible for the observed patterns and variability in zooplankton, and to understand possible relations between zooplankton and their environment on different space and time scales; c) to observe and monitor the variability in zooplankton in relation to local and global climate changes.
The Mývatn Research Station is an ecological field research institute under the Icelandic Ministry for the Environment. It operates in close cooperation with the University of Iceland. Its main task is to carry out and stimulate research that aids conservation and management of the Mývatn-Laxá nature protection area of international interest. Research activities are twofold: (1) long-term monitoring of the ecological situation; (2) short term research projects focusing on certain aspects of the ecosystem. Ecological monitoring started in 1975. It focuses on the entire food web of the lake. The nature of Mývatn and Laxá Myvatn is a large lake at the edge of the volcanic zone cutting through North Iceland. Its water wells up in a number of springs on the lake shore. Craters and volcanoes dominate the landscape. Several famous volcanoes are in the vicinity such as Hverfjall (Hverfell), Krafla and the Threngslaborgir crater row . Volcanic activity in the region gives rare insight into the process of continental drift. Many strange lava formations occur, Dimmuborgir and Höfdi being the most famous ones, also the pseudocrates (rootless vents) which are characteristic for the lake shore. The lake itself and its outflow the River Laxá is the most fertile freshwater system in Iceland. The bird life and fishing (including Atlantic Salmon) is extremely rich. Owing to the position of Iceland between two continents and on the border between the arctic and boreal ecozones the species composition of the biota is unique. The richness is based on phosphate-rich groundwater, relatively high insolation and optimal water depth for aquatic plants and waterfowl. Fishing and harvesting of duck eggs has always been important for the local household. Hydro- and geothermal power extraction as well as mining activities are currently the main threats to the landscape and ecology of the area. The area attracts large numbers of tourists. The local nature undergoes substantial changes because of soil erosion, volcanic activity, mining, geothermal power utilization, agriculture, changes in grazing regime, structures for communication and other building activities. The area is a protected nature reserve, managed by the Environment and Food Agency of Iceland , backed up by scientific information from the Myvatn Research Station. The Myvatn Research Station The Myvatn Research Station is a research institute focusing on Lake Mývatn and the outflowing river Laxá and their water catchment, with the overall aims of understanding and foreseeing changes in the ecosystem and its surroundings. Monitoring of the lake biota The overall aim of monitoring is to follow trends in the biota in order to detect undesired changes that may be caused by human activities and call for management actions. The monitoring is based on simple, well tested and ecologically meaningful methods that tackle various levels of the foodweb to maximize interpretability. Most monitoring projects are backed up by focused short-term research projects and are designed to yield usable data for scientific publications. The monitoring is carried out in cooperation with the University of Iceland, University of Wisconsin (USA), the Nature Center of North-East Iceland, the Institute of Freshwater Fisheries, and the Hólar College. Monitoring of other areas For comparative purpose the Myvatn Research Station is actively engaged in monitoring of two other wetland areas in North Iceland, those of Svartárvatn and Svarfadardalur. Food-web research The monitoring has revealed decadal fluctuations in the food web that have generated a lot of interest. Our research has focused on the potential drivers of the fluctuations, especially the interaction between the midge larvae and their food organisms (diatoms). We also do research on the effect of fluctuations in the populations of food organisms (midges and crustaceans) on the population dynamics of the vertebrates feeding on them (fish and waterfowl). Palaeoenvironment There is also an emphasis on long term palaeorecords of the lake and terrestrial ecosystems, including human impact. The research station organises, carries out or supports research on the palaeoenvironment of Lake Mývatn and the surrounding landscape. The main projects include (1) mapping of Viking Age turf wall systems revealing land division and management in the early days of Iceland’s history; (2) mapping and dating of charcoal pits and other features related to deforestation in the medieval period; (3) detailed reconstruction of the lake biota of Mývatn from remains in the lake sediment; (4) archaeological excavation of a midden, covering the whole historical period (870 to present) revealing the history of human use of the local resources; (5) historical documents of wildlife abundance. All this research is carried out in collaboration with a number of universities in the US., the UK and Scandinavia.
MRI's activities are organized into three main sections: Environment Section, Resources Section and Fisheries Advisory Section. Marine Environment Section: A large part of the sections work deals with environmental conditions (nutrients, temperature, salinity) in the sea, marine geology, and the ecology of algae, zooplankton, fish larvae, fish juveniles, and benthos. Amongst the larger projects undertaken within the Environment Section are investigations on currents using satellite monitored drifters and other modern technology, assessment of primary productivity, secondary productivity, overwintering and spring spawning of zooplankton, and studies on spawning of the most important exploited fish stocks. Marine Resources Section: Investigations are undertaken on the exploited stocks of fish, crustaceans, mollusks and marine mammals. The major part of the work involves estimating stock sizes and the total allowable catch (TAC) for each stock. Examples of some large projects within the Marine Resources Section are annual ground fish surveys covering the shelf area around Iceland and surveys for assessing inshore and deep‐water shrimp, lobster, and scallop stocks. The pelagic stocks of capelin and herring are also monitored annually in extensive research surveys using acoustic methods. Further, in recent years an extensive program concentrating on multi‐species interactions of exploited stocks in Icelandic waters has also been carried out. A designated project for improving understanding of the dynamics of the ecosystem deep north of Iceland has been conducted in recent years. The Fisheries Advisory Section: The Fisheries Advisory Section scrutinizes stock assessments and prepares the formal advice on TAC´s and sustainable fishing strategies for the government. Supporting departments: Important supporting departments are, the Electronic Department and the Fisheries Library. The Electronic Department supervises installation, testing and maintenance of research instruments. The Fisheries Library collects books and periodicals in all fields of marine sciences and publishes the MRI report series. 20 SAON: Inventory on Monitoring Networks Iceland Main gaps: Not specified Network type: ‐ Thematic observations ‐ Field stations ‐ Community based observations
The Icelandic Institute of Natural History dates back to 1889 when the Icelandic Natural History Society established a Natural History Museum in Reykjavik. Now owned and run by the State, the Institute conducts basic and applied research on the nature of Iceland in the fields of botany, geology and zoology. The Institute maintains scientific specimen collections and holds data banks on the Icelandic nature, i.e. all animal and plant species, rocks and minerals, it assembles literature on the natural history of Iceland, operates the Icelandic Bird‐Ringing Scheme, prepares distribution, vegetation, and geological maps, conducts research in connection with environmental impact assessments and sustainability, advises on sustainable use of natural resources and land use, and monitors and assesses the conservation value of species, habitats and ecosystems. Member/connected to global network: IINH is the national representative in the Bern Convention on the conservation of European wildlife and natural habitats and participates in the several working groups of the Convention in areas that are relevant to Iceland. IINH is the national representative in The Conservation of Arctic Flora and Fauna (CAFF) and has had a representative on the board of CAFF from the beginning. IINH participates in expert groups on marine birds, vegetation, sanctuaries, and biodiversity monitoring in the Arctic within the CAFF. IINH is further participating in the work of a Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) under the Convention on Biological Diversity (CBD). IINH is the national representative in the Global Biodiversity Information Facility (GBIF) and participates in The North European and Baltic Network on Invasive Alien Species (NOBANIS) on behalf of Iceland. Type of network: ‐ Species monitoring ‐ Area monitoring, incl. protected areas ‐ Thematic observations ‐ Community based observations ‐ Endangered species Main gaps: Not specified Network type: ‐ Species monitoring ‐ Area monitoring, incl. protected areas ‐ Thematic observations ‐ Community based observations ‐ Endangered species
The main purpose of IMO is to contribute towards increased security and efficiency in society by: • Monitoring, analyzing, interpreting, informing, giving advice and counsel, providing warnings and forecasts and where possible, predicting natural processes and natural hazards; • issuing public and aviation alerts about impending natural hazards, such as volcanic ash, extreme weather, avalanching, landslides and flooding; • conducting research on the physics of air, land and sea, specifically in the fields of hydrology, glaciology, climatology, seismology and volcanology; • maintaining high quality service and efficiency in providing information in the interest of economy, of security affairs, of sustainable usage of natural resources and with regard to other needs of the public; • ensuring the accumulation and preservation of data and knowledge regarding the long-term development of natural processes such as climate, glacier changes, crustal movements and other environmental matters that fall under IMO‘s responsibility. IMO has a long-term advisory role with the Icelandic Civil Defense and issues public alerts about impending natural hazards. The institute participates in international weather and aviation alert systems, such as London Volcanic Ash Advisory Centre (VAAC), the Icelandic Aviation Oceanic Area Control Center (OAC Reykjavík) and the European alarm system for extreme weather, Meteoalarm. Network type: Thematic observations in 6 different fields
TOV is based on integrated monitoring where species and ecosystems are seen in context, providing better opportunities to interpret the results. TOV areas include seven monitoring sites in Boreal birch forest, all nature-protected areas. Lund in the south to Dividalen north is monitoring; lichen and algae on trees, ground vegetation, rodents, passerine birds, grouse, Gyrfalcon and Golden Eagle. There are also 10 Boreal spruce forest areas monitored, only for ground vegetation. The range of areas reflects both climate variability and differences in impacts from long-range pollutants throughout the country.
Monitoring of flora and vegetation includes records of species and species composition of ground vegetation and mosses, lichens and fungi on tree trunks. Fauna monitoring includes population and reproduction monitoring for species which may indicate effects of long-range transboundary air pollution, and population monitoring of key species. In addition, a nationwide survey of selected variables, prevalence of lichen and algae on trees, as well as contaminants in wildlife species and eggs from birds of prey. Observed changes are considered in relation to the influence of anthropogenic factors.
The sample plot-based national forest inventory (RIS-RT) has been a continuous activity at SLU (and the forest research organizations existing before SLU) since 1923. All Sweden is included except the subalpine birch forest along the mountain chain. The national forest inventory is part of Sweden’s official statistics and is maintained by the Department of Forest Resource Management (SLU-FRM). The sampling strategy combines random and fixed plots and covers the country every 5 years. Each year around 10 000 sample plots are field surveyed nationwide. Approximately 200 variables are recorded for each plot.
The Northern Contaminants Program aims to reduce and where possible eliminate long-range contaminants from the Arctic Environment while providing Northerners with the information they need to make informed dietary choices, particularly concerning traditional/country food. To achieve these objectives the NCP conducts research and monitoring related to contaminants in the Arctic environment and people. Monitoring efforts focus on regular (annual) assessment of contaminant levels in a range of media, including air, biota and humans. Environmental research is conducted into the pathways, processes and effects of contaminants on Arctic ecosystems while human health research focuses on assessing contaminant exposure, toxicity research, epidemiological (cohort) studies, and risk-benefit assessment and communications. Main gaps: Contaminant measurements in Arctic seawater, toxicity data specific to Arctic species. Network type: - Thematical observations: Contaminants levels and relevant ancilliary parameters - Field stations: Atmospheric observing stations at Alert, Nunavut and Little Fox Lake, Yukon. - Community based observations: Numerous communities throughout the Canadian Arctic participate in sample collection - Coordination: National coordination of the program provided by the NCP secretariat, which also acts as liaison with AMAP.
The main objective is to monitor the breeding seabird populations (primarily Uria lomvia, Somateria molissima and Rissa tridactyla).
In the context of the tasks SAON SG steering group, the topology of the Arctic hydrometeorological observation network can be presented in the following concise form: 1. Agrometeorological; 2. Actinometric; 3. Aerological (radiosounding); 4. Water balance; 5. Hydrological on rivers; 6. Hydrometeorological on lakes; 7. Glaciological; 8. Meteorological; 9. Marine hydrometeorological (in the coastal zone, river estuaries, open areas including marine vessel and expeditionary); 10. Avalanche; 11. Ozone measuring; 12. Heat balance; 13. Atmospheric electricity; 14. Water, soil and snow surface evaporation; 15. Chemical composition of water and air. Observation network data are operationally transferred to Roshydromet’s data telecommunication network except for those indicated in items 4, 7,12-15. The main networks in terms of the number of observation points and volume of information obtained are meteorological, marine hydrometeorological, river hydrological, aerological and actinometric ones. Meteorological observations are considered as the main type of observations. To establish a common database and control timely and complete collection and distribution of information, a catalog of meteorological bulletins is being created to be the plan of hydrometeorological information transfer from the sources to Roshydromet’s data telecommunication network to distribute among information recipients The catalog of meteorological observations is maintained by State Institution “Hydrometeorological Center” and State Institution “Main Radio-Meterological Center”. Electronic version of the catalogs of meteorological bulletins is maintained by State Institution “Main Radio-Meterological Center” and located on the Internet site http://grmc.mecom.ru. The catalog of meteorological bulletins contains the following information: − Name of Roshydromet’s subordinate Federal State Institution and observation point to input data into the automated data system; − shortened title of the hydrometeorological bulletin in proper format; − observation data coded form; − hours of observation; − data transfer check time; − number of observation points taking part in one bulletin; − lists of five-digit indices for observation points. Changes are entered into the catalogs of meteorological bulletins quarterly. WMO’s WWW is considered as the main foreign information consumer. The lists of WMO correspondent stations are given in WMO publications # 9, vol. C, part 1 (Catalog of Meteorological Observations), vol. A (Observation Stations). 2. SAON is expected to stimulate the process of improving configuration and completeness of the circumpolar region monitoring system as a potential tool for international consolidation of the opportunities available in the functioning of observation networks in order to improve national standards quality and ensure more complete compliance of the Arctic research strategies proposed to socioeconomic needs and interests of Arctic countries 3. The catalog of points and main observations is given in Table 1 (see Fig. 1). The maximum development of the Russian hydrometeorological observations in the Arctic was reached in early 1980s, when information was received from 110 stations. In subsequent years, the number of stations decreased more than twice (Fig. 2). The current level of observations is determined by the functioning of a network consisting of 49 points two of which are automatic weather stations. Three points are temporarily removed from operation. In short term, 8 automatic stations are expected to be opened; while in medium and long term, the number of manned observation points will increase up to 52-54, and the number of automatic ones – up to 20-25. For the manned network, the meteorological program includes a set of eight-hour observations of: atmosphere pressure, wind parameters, air and soil temperature, relative humidity, weather phenomena, cloud height, visual range, precipitation, while for automatic weather stations – a set of reduced 4-hour observations. The marine hydrometeorological program includes coastal observation of temperature, water salinity (density), sea-level variations, heave, ice distribution (and thickness) as well as meteorological parameters under the change of observation conditions from hourly to ten-day observations. The river hydrological program is quite similar to the marine one. It does not include observations of water density, however, they can be included for the stations having a special status, measurement of water discharge, alluvia and chemical composition of water. The programs will include hourly and ten-day observations. The aerological program will include 1-2 –hour measurements of: atmosphere pressure and wind parameters on selected isobaric surfaces. Actinometric observations include measurement of 5 components of atmosphere radiation balance in case of the full program and measurement of total radiation under a reduced program. Network type: The main networks in terms of the number of observation points and volume of information obtained are meteorological, marine hydrometeorological, river hydrological, aerological and actinometric ones.