The AMAP Project Directory (AMAP PD) is a catalog of projects and activities that contribute to assessment and monitoring in the Arctic. The Arctic Monitoring and Assessment Programme (AMAP), is a working group under the Arctic Council, tasked with monitoring and asessing pollution, climate change, human health and to provide scientific advice as a basis for policy making.
The directory, which is continously updated, documents national and international projects and programmes that contribute to the overall AMAP programme, and provides information on data access as well as a gateway for the AMAP Thematic Data Centres.
Other catalogs through this service are ENVINET, SAON and SEARCH, or refer to the full list of projects/activities.
To edit or add records to any of the catalogs, log in or create an account.
Due to the high organochlorine concentrations reported in Arctic top predators, and the potential transport of contaminants with the drifting sea-ice in the Arctic, organisms constituting lower trophic levels living in association with sea-ice have been proposed as susceptible of uptake of high loads of organic pollutants. The present project studies the organochlorine occurrence in organisms living in the marginal ice zone north of Svalbard and in the Fram Strait. This includes both ice fauna (ice-amphipods), zooplankton, polar cod and different seabird species foraging in the marginal ice zone. Our objectives are to investigate: *The bioaccumulation of organochlorines in ice-associated amphipods in relation to diet preference, spatial variation due to sea ice drift route, size, sampling year, uptake and distribution within the body. *Comparison of organochlorine contamination in pelagic and ice-associated organisms at the similar trophic position, to investigate the effect of sea ice as a transporter and concentrator of pollutants. *Spatial variation in zooplankton species, related to differences in water masses and exposure to first year or multi year sea ice. *The contamination load in different seabirds feeding in the marginal ice zone, in relation to diet choice and estimated trophic position, taxonomically closeness and the induction of hepatic CYP P450 enzymes.
In 1990, the Directorate for Nature Management (DN) established an area for integrated monitoring within Børgefjell National Park, Røyrvik, N Trøndelag. Studies of vegetation-environment relationships in the area was performed by NINA. The area includes both subalpine birch forest and low alpine heath. The new established vegetation investigation included all together 80 different species. This material was processed numerically by using multivariate methods. Indirect gradient analyses were performed using Detrended Correspondence Analysis (DCA) and Local Nonmetric Multidimentional Scaling (LNMDS). Direct gradient analyses were performed by using rescaled hybrid Canonical Correspondence Analysis (CCA). Non-parametric correlation analyses, Kendall’s , were performed between environmental parameters and DCA axis values. The results of the numerical and statistical processing were used partly to provide a description of the vegetational structure in the material and partly to quantify how much each ecological parameters contributed to determination of vegetational structure. This work shows the species distribution along various complex gradients; moisture, nutrient conditions, light etc. The investigation is primarily designed to study vegetation dynamics along these gradients and whether changes in the number of species can be related to changes in physical, biotic and, not least, chemical parameters. Variance analysis was performed to assess to what extent the sample plots tends move in a determined direction from 1990 to 1995. The variation between the years were not significant along the primary complex gradients, but there were a significant displacement of species along the following gradients. The most important species were: Vaccinium vitis-idaea, Melampyrum sylvaticum and Hylocomium splendens), which showed an increase and some cryptogams like Brachythecium reflexum, B. salebrosum and Cladonia ecmocyna which declined.
The study covers many areas of ecotoxicology research on polar bears. Monitoring of POP levels and studies of effects on endocrine disruption, immune system, reproduction, and demography are all parts of the study.
The monitoring is focused on risk assessment of LRTAP -type substances in terrestrial foodchains of the Boreal and subarctic environment. The concentration levels in precipitation, in the soil humus and in the indicator species (e.g. red woodants, common shrew) are studied annually in the seven areas locating in the Southern, Middle and Northern Finland. Possible gradients and changes in concentration levels between the Southern and Northern environments will be a part of the base data for risk assessment and pollution development in Finland.
Objectives: To determine the temporal and spatial trends and accumulation rates of heavy metals and persistent organic contamineants and to differentiate between natural and anthropogenic sources of heavy metals. Summary: Heavy metal and persistent organic contaminant concentrations and accumulation rate are measured in Pb-210 dated sediment cores of small lakes in different areas of Finnish Lapland.
The project aims to describe the environmental status of marine sediments in van Mijenfjorden. This to provide baseline data of contaminants and biodiversity, as well as for monitoring of eventual contamination from industrial activities (coal mining).
Investigation of benthic faunal communities for: taxon distribution/ biodiversity mapping; examination of effects of glacial and physical disturbance on community structure; relation between faunal structure and sediment contaminants.
The project aims to carry out an environmental assessment of the marine environment close to the three main settlements in the Isfjorden complex; Barentsburg, Longyearbyen and Pyramiden. The study comprises analyses of sediment geochemistry and soft-bottom benthic fauna. Attention is given to distinguishing atmospheric transport of contaminants from those arising from local sources.
Short Term i) to provide additional information for use in updating health advisories. Long Term i)to investigate the fate and effects of contaminant deposition and transport to the Yukon, allowing Northerners to better manage the issue of contaminants. ii)to determine levels of contaminants for use in long term trend monitoring.
1. Continue to investigate spatial and temporal patterns in mercury concentrations in fish in lakes in the Mackenzie River Basin with a focus on predatory fish in smaller lakes near Fort Simpson but also including Great Bear Lake 2. Assess temporal trends in mercury concentrations and influencing factors, e.g., climate change 3. Conduct sediment core studies as opportunities allow to characterize long-term trends in mercury deposition and productivity 4. Integrate the findings of this study with our mercury trend monitoring in Great Slave Lake and the western provinces.