AMAP Project Directory

AMAP Project Directory

The AMAP Project Directory (AMAP PD) is a catalog of projects and activities that contribute to assessment and monitoring in the Arctic. The Arctic Monitoring and Assessment Programme (AMAP), is a working group under the Arctic Council, tasked with monitoring and asessing pollution, climate change, human health and to provide scientific advice as a basis for policy making.

The directory, which is continously updated, documents national and international projects and programmes that contribute to the overall AMAP programme, and provides information on data access as well as a gateway for the AMAP Thematic Data Centres.

Other catalogs through this service are ENVINET, SAON and SEARCH, or refer to the full list of projects/activities.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 13 of 13
1. Ozone and UV monitoring in Greenland

Denmark has obligations according to the agreements in the Montreal Protocol, ie. for the monitoring of the ozone layer. This project is a fullfilment of these obligations, and the work is being supported by the Danish Environment Protection Agency (Danish EPA) through a DANCEA funding. Recommandations for the monitoring are updated every 3rd year via the Ozone Research Managers (ORM) Meeting at WMO in Geneva. The most recent meeting was in 2017. The monitoring program was initiated in 2002. The current partnership consists of Latmos (FR), NASA (US) and DMI (DK). Monitoring of the ozone layer and measurement of the UV radiation currently takes place in 2 locations in Greenland: Kangerlussuaq and Ittoqqortoormiit. In Kangerlussuaq the instrumentation consists of a Brewer spectrometer capable of measuring the ozone column and doing UVB scans, a SAOZ spectrometer measuring ozone and NO2, and an Aeronet Sun Photometer (hosted for NASA). In Ittoqqortoormiit the instrumentation consists of an ozone balloon borne sounding station, a SAOZ spectrometer (hosted for Latmos), a GUV 2511 broadband instrument and an Aeronet Sun Photometer (hosted for NASA). Retrieved data is uploaded to international databases (WOUDC, NDACC & NILU). Retrieved data is used to correct satellite measurements and to monitor the state of the ozone layer.

ozone ozonesonde polar stratospheric clouds UV radiation
2. Pollutants in air, monthly values, Precipitation chemistry, monthly sampling.Ozone measurements, passive sampling.S- and N-components in air with passive sampling.

 

This project is now part of the project: Acidifying and Eutrophifying Substances in Air and Precipitation

National Environmental Monitoring Programme. National Environmental Monitoring Programme. The PMK Network is part of the national network for deposition measurements. The aim is (i) a long-term monitoring of concentration and deposition of selected air transported compounds caused acidification and eutrophication in different parts of Sweden; (ii) to generate knowledge about long-term variation in the field deposition, (iii) to give the background data from low polluted areas for calculation of pollutants deposition in more polluted areas the monitoring of pollutants in air and precipitations are proceed. Ozon and air samples for analysis of sulphur and nitrogen compounds, HCl as well as basic metal ions (Na, K, Ca, Mg, are taken on a monthly basis in air and precipitation. Ozone, as well as sulphur and the nitrogen compound particles are measured in air, and sulphur and nitrogen compounds, base cations, pH and electro-conductivity in precipitation.

acidification Arctic Atmosphere Contaminant transport Data management Dioxins/furans Eutrophication Exposure Local pollution Long-range transport Mapping ozone precipitation Temporal trends
3. Pollutants in air, daily values

 

This project is now part of the project : Acidifying and Eutrophifying Substances in Air and Precipitation

National Environmental Monitoring in Sweden. The project is included in a European Monitoring and Evaluation Programme network (EMEP). The subprogram main task is to check if international agreements as UN Convention on Long range Trans-boundary Air Pollution (CLTRAP) is followed. The measurements follow up the Swedish national generational goals "Natural Acidification Only", "A Non-Toxic Environment" and "Clean Air". The network comprises 10 stations, out of which three are in north Sweden, the two one are in AMAP area. Air chemistry is monitored by diffusion samplers. The following compounds are measured: SO2, SO4, tot-NH4, tot-NO3, soot, NO2. Precipitation quality is monitored following measured compounds: SO4-S, NO-N, Cl, NH4-N, Ca, Mg, Na, K, pH, EC. Metals in air and precipitation are analysed only at one north station (Bredkälen), and include: As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, V, Hg, methyl-Hg.

acidification air pollution Arctic Atmosphere Contaminant transport Data management Dioxins/furans EMEP Eutrophication Long-range transport Mapping Modelling ozone precipitation Spatial trends Temporal trends
4. Continual monitoring of the ozone layer.

National Environmental Monitoring in Sweden in "Air" programme and sub-programme "the thickness of the ozon layer". The project follows changes in the thickness of the ozone layer in the atmosphere over Sweden.

Arctic Atmosphere Climate Data management Exposure Modelling national monitoring ozone UV radiation
5. Pallas-Sodankylä, GAW station, Northern Finland

GAW serves as an early warning system to detect further changes in atmospheric concentrations of greenhouse gases and changes in the ozone layer, and in the long-range transport of pollutants, including acidity and toxicity of rain as well as the atmospheric burden of aerosols.

Atmospheric processes Ozone Arctic haze UV radiation Radioactivity Climate variability Long-range transport Climate Acidification Contaminant transport Climate change Radionuclides Arctic Atmosphere Temporal trends
6. Oulanka, EMEP station, Northern Finland

Monitoring of air quality and deposition.

Atmospheric processes Ozone Heavy metals Long-range transport Acidification Contaminant transport Atmosphere Temporal trends
7. Millimetre wave radiometer for stratospheric trace gas measurements

A millimeter wave radiometer is started operation at the Swedish Institute of Space Physics, Kiruna, Sweden. The location of the instrument (67.8 N, 20.4 E) allows continuous observation of the evolution of ozone and ozone related trace gases in the Arctic polar stratosphere. It is designed for measurements of thermal emission lines around 204 Ghz. At this frequency observations include of ozone, chlorine monoxide, nitrous oxide, and nitric acid.

Ozone Geophysics Climate Modelling Arctic Atmosphere Temporal trends
8. Differential Optical Absorption Spectrometer

The DOAS instrument consists of grating spectrometer covering the visible and near ultraviolet spectral region. Zenith-scattered sunlight is collected by simple one-lens telescopes and fed via optical fiber bundles into the spectrometers, where atmospheric absorption spectra are obtained. The instrument runs automatically. Total column densities of the stratospheric trace species ozone, NO2, BrO, and OClO are retrieved from the spectra using the DOAS algorithm. These are species that play a major role in ozone chemistry, either by themselves in ozone destruction (BrO) or as indicators of chlorine activation/deactivation (OClO). The chemistry and dynamics of ozone destruction is investigated, e.g. with respect to the location of the polar vortex during the winter. The instrument is also useful for detection of polar stratospheric clouds using the zenith-sky colour index method.

Ozone Geophysics Modelling Arctic Atmosphere Temporal trends
9. Fourier Transform Infra-Red spectrometry

FT-IR spectrometers are capable to quantifiy the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC-22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS Selected research topics and activities: chemical ozone depletion by observation of key species (O3, ClONO2, HNO3, HCl, ..) details of the ozone formation process by isotopic studies in ozone profile retrieval to detect dynamical changes transport studies of chemical tracers and tropospheric pollutants satellite validation

Atmospheric processes Ozone Organochlorines Geophysics chlorofluorocarbons (CFC) Modelling Emissions Arctic Atmosphere Temporal trends
10. Fourier Transform Infra-Red spectrometry

FT-IR spectrometers are capable to quantifiy the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC-22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS Selected research topics and activities: chemical ozone depletion by observation of key species (O3, ClONO2, HNO3, HCl, ..) details of the ozone formation process by isotopic studies in ozone profile retrieval to detect dynamical changes transport studies of chemical tracers and tropospheric pollutants satellite validation

Atmospheric processes Ozone Organochlorines Geophysics chlorofluorocarbons (CFC) Modelling Emissions Arctic Atmosphere Temporal trends
11. Descartes

Objectives 1. To develop the measurement technique further, providing more accurate measurements and extend the method to a larger number of trace species 2. To monitor the presence of CFC:s and other longlived anthropogenic tracers in the stratosphere 3. To use long-lived anthropogenic species as tracers of atmospheric motion, in particular for comparison with atmospheric models Reserarchers: Descartes is a joint research programme currently involving N.R.P Harris and J.A. Pyle, Centre for Atmospheric Science at the Department of Chemistry, University of Cambridge, U.K., and Hans Nilsson and Johan Arvelius, Swedish Institute of Space Physics, Kiruna, Sweden

Atmospheric processes Ozone Geophysics Chlorofluorocarbons (CFC) Emissions Arctic Atmosphere Temporal trends
12. Stratospheric observations with LIDAR technique (NDSC)

The stratospheric multi wavelength LIDAR instrument, which is part of the NDSC contribution of the Koldewey-Station, consists of two lasers, a XeCl-Excimer laser for UV-wavelengths and a Nd:YAG-laser for near IR- and visible wavelengths, two telescopes (of 60 cm and 150 cm diameter) and a detection system with eight channels. Ozone profiles are obtained by the DIAL method using the wavelengths at 308 and 353 nm. Aerosol data is recorded at three wavelengths (353 nm, 532 nm, 1064 nm) with depolarization measurements at 532 nm. In addition the vibrational N2-Raman scattered light at 608 nm is recorded. As lidar measurements require clear skies and a low background light level, the observations are concentrated on the winter months from November through March. The most prominent feature is the regular observation of Polar Stratospheric Clouds (PSCs). PSCs are known to be a necessary prerequisite for the strong polar ozone loss, which is observed in the Arctic (and above Spitsbergen). The PSC data set accumulated during the last years allows the characterization of the various types of PSCs and how they form and develop. The 353 and 532 nm channels are also used for temperature retrievals in the altitude range above the aerosol layer up to 50 km.

Aerosols Atmospheric processes Ozone Polar Stratospheric Clouds UV radiation Geophysics Climate variability stratosphere Climate Climate change Aerosol Arctic PSCs Atmosphere LIDAR UV
13. Monitoring and Modelling of Atmospheric Pollution in Greenland

In 2000 it is proposed to operate an atmospheric programme consisting of a monitoring and a modelling part and composed of 3 programme modules. The monitoring programme consists of two parts. I. It is proposed to continue the weekly measurements of acidifying components and heavy metals at Station Nord in north-east Greenland for assessment of atmospheric levels and trends. The measuring programme includes also highly time resolved measurements of Ozone and of total gaseous Mercury (TGM). The results will also be used for continued development and verification of the transport model calculations. Receptor modelling of the pollution composition will be used for identification and quantification of the source types that influence the atmospheric pollution in north-east Greenland. Comparison of the two sets of modelling results is expected to give better models. II. The purpose of the project is the operation of a permanent air monitoring programme in the populated West Greenland at a location which is representative for transboundary air pollution. The most promising sites are located in the Disko Bay area and in the vicinity of Nuuk. The objectives are to obtain data on the concentration levels of air pollutants that can be used for assessing seasonal variations and trends and for studying long range transport of pollutants mainly from North America to West Greenland. The purpose is further to provide data for development and improvement of long range transport models that can be used to identify the origin of the pollution and its transport pathways. The results from measurements and model calculations will be used to assess the magnitude of deposition to sea and land in this populated region of Greenland. III. In the proposed modelling programme the operation, application and maintenance of the current basic hemispheric model will be continued. Results on origin, transport, and deposition of contaminants on land and sea surfaces in the Arctic are essential for interpretation and understanding the Arctic air pollution. The model will be developed to improve the spatial and temporal resolutions, as well as the accuracy by including physically and mathematically better descriptions of the key processes treated in the model. The work to expand the model to include also non-volatile heavy metals, such as Cadmium and Lead on an hemispheric scale will be continued. Since the atmospheric chemistry of Ozone and Mercury seem to be strongly connected in the Arctic it is planned to continue the development and testing of a model module for hemispheric transport and chemistry for ozone and mercury to assess the origin and fate of this highly toxic metal in the Arctic.

Atmospheric processes Atmospheric Pathways Ozone Arctic haze Long-range transport Acidification Pollution sources Modelling Emissions Arctic Atmospheric Deposition Atmosphere