The AMAP Project Directory (AMAP PD) is a catalog of projects and activities that contribute to assessment and monitoring in the Arctic. The Arctic Monitoring and Assessment Programme (AMAP), is a working group under the Arctic Council, tasked with monitoring and asessing pollution, climate change, human health and to provide scientific advice as a basis for policy making.
The directory, which is continously updated, documents national and international projects and programmes that contribute to the overall AMAP programme, and provides information on data access as well as a gateway for the AMAP Thematic Data Centres.
Other catalogs through this service are ENVINET, SAON and SEARCH, or refer to the full list of projects/activities.
To edit or add records to any of the catalogs, log in or create an account.
Objectives 1. To determine tissue residue levels of metals and radionuclides in caribou given its importance as a country food species. 2. To monitor contaminant exposure in caribou as a representative species of the terrestrial arctic ecosystem. 3. To examine metal speciation and isotopes ratios (uranium, thorium, strontium, titanium) which may provide insight into the source of contamination (anthropogenic vs. natural). 4.To provide information on temporal trends in radionuclide and metal levels in several caribou herds to determine whether levels are increasing, decreasing or remaining the same over time. 5. To determine the efficacy of international controls in reducing or eliminating pollutants entering the Canadian Arctic terrestrial ecosystem. Barren-ground caribou are found across northern Canada, and are a major component of the traditional diet in communities across the Northwest Territories (NWT) and Nunavut. Caribou are a good indicator species for terrestrial ecosystem contamination given their wide distribution across northern Canada, the simple air-lichen-caribou food chain, the existing baseline data set, and their importance as a country food species. Three (3) caribou herds from across the NWT and Nunavut have been selected as sentinel herds, with a different herd to be sampled each year to determine tissue residue levels and monitor temporal trends. Field collections will be conducted in cooperation with local Hunter’s and Trapper’s Organizations and/or local aboriginal organizations, utilizing local hunters in planning and conducting the field work. Samples will be tested for a wide range of environmental contaminants including 10 heavy metals and 7 radionuclides.
i. Determine mercury, metals and persistent organic contaminant pollutants (POPs) concentrations in lake trout harvested from two locations (West Basin near Hay River, East Arm at Lutsel K’e) and burbot harvested from one location (West Basin at Fort Resolution) in 2015 to further extend the long-term (1993-2013 (POPs) and 1993-2014 (mercury)) database. ii. Determine POPs trends in lake trout and burbot using our 1993-2014 data base. iii. Continue our investigations of mercury trends in predatory fish to include lakes in the Deh Cho, Great Bear Lake, and other lakes as opportunities arise. iv. Participate in and contribute information to AMAP expert work groups for trend monitoring for POPs and mercury. v. Integrate our mercury trend assessments with studies we are conducting in the western provinces as part of Canada’s Clear Air Regularly Agenda for its Mercury Science Assessment. vi. Work with communities in capacity building and training.
The possibility of restoring the salmon stocks in the Tuloma system is assessed by collecting background information on the river system: present fish fauna, habitat quality, migratory routes etc. Planning the restoration including technical and management aspects is under way.
Monitoring of the salmon stocksof the Teno and Näätämö river systems is based on long term data collection on juvenile salmon production, biological characteristics of the spawning stock, origin of salmon (wild/reared) and statistics on fishery and catches. Information on other fish species than salmon is also available.
The general objective of the human health sub-programme is to protect and promote the health of Arctic peoples, especially children, with respect to exposure environmental contaminants.
Elevated levels of 137Cs caused by previous atmospheric nuclear weapons tests fallout and the Chernobyl accident have been observed in Finnmark, Northern Norway. Due to the large consumption of potentially contaminated reindeer meat, whole body measurements of 137Cs levels in reindeer herders have been performed since 1965.
Persistent organic pollution is a global problem. This fact is especially apparent in the Arctic where pesticides currently used in distant environments accumulate, in some cases to higher levels than those observed in the source region. This pollution threatens the well-being of the aboriginal inhabitants of these regions. Most of the traditionally harvested animals in the Arctic are long-lived and from the higher trophic levels of the food chain, thereby providing an opportunity for considerable bioaccumulation and biomagnification of persistent contaminants. This has prompted a growing concern by the Alaska Inupiat that pollutants in the environment might be contributing to their unique morbidity and mortality rates, especially of their children. Our studies are currently focused on two specific organic pollutants found in the Arctic environment; 1}hexachlorobenzene (HCB), a byproduct during manufacture of several different chlorinated compounds and consistently detected in the Arctic and, 2} dichlorodiphenyl dichloroethylene (p,p’-DDE), a chlorinated environmental breakdown product measured in the Arctic population at significantly higher concentrations than the parent pesticide, DDT. We hypothesize that mammalian embryonic cell exposure to these chemicals, individually or as mixtures at environmentally relevant concentrations and ratios, will alter the cell cycle and/or cause death by apoptosis, rather than by necrosis. We also predict synergistic cytotoxicity of the chemical mixture because of an accumulation of deleterious effects at different cellular target sites by each chemical. We further hypothesize that while some chemicals target non-genetic cellular components (such as a cell membrane or cytosolic component), other chemical effects will occur primarily at the genetic level, directly or indirectly. Our experiments have been designed as a set of sensitive cellular and molecular assays to compare levels and types of cytotoxic and genotoxic activity of the above chemicals (individual and mixture), at environmentally relevant concentrations, upon embryonic cells in culture. Our experimental evidence thus far is that these chemicals, separately or as a mixture at concentrations and molar ratios relevant to that measured in the Arctic environment, do have cytotoxic and/or genotoxic effects that could result in profound consequences to exposed tissues of a developing embryo or fetus. We have further experimental evidence that exposure to both chemicals at environmentally relevant concentrations is more toxic to the cell than the sum of effects by exposure to the individual chemicals. Experimental results indicate this is due to different cellular target sites for each chemical (Appendix A: Preliminary Results).
The aim of the study is to make a first integrated assessment of environmental and socio-economic aspects of the northern Russian coastal region, in this case the sub-Arctic White Sea and Arctic Pechora Sea, on the basis of 1) the present state of the coastal environment, as based on the results of INTAS project 94-391, and 2) the sociocultural and economic significance of those regions, and the present and potential conflict situations between, and developmental potentials of, environmental and local socio-economic aspects. Research activities: Inventory and literature search on socio-economic and environmental aspects in White Sea, southern Barents Sea and Pechora Sea.
Brief: Assessment of the significance of aquatic food chains as a pathways of exposure of indigenous peoples to PTS, assessment of the relative importance of local and distant sources, and the role of atmospheric and riverine transport of PTS in Northern Russia. Project rationale and objectives: (1) To assess levels of Persistent Toxic Substances (PTS) in the environment in selected areas of the Russian North, their biomagnification in aquatic and terrestrial food chains, and contamination of traditional (country) foods that are important components of the diet of indigenous peoples. (2) To assess exposure of indigenous peoples in the Russian North to PTS, and the human health impacts of pollution from local and remote sources, as a basis for actions to reduce the risks associated with these exposures. (3) To inform indigenous peoples about contamination by PTS of their environment and traditional food sources, and empower them to take appropriate remedial actions to reduce health risks. (4) To enhance the position of the Russian Federation in international negotiations to reduce the use of PTS, and to empower the Russian Association of Indigenous Peoples of the North (RAIPON) to participate actively and fully in these negotiations. Project activities to achieve outcomes: (1) Inventory of local pollution sources in the vicinities of selected indigenous communities. (2) Survey of levels and fluxes of PTS in riverine and coastal marine environment important for indigenous peoples living in these environments and using them for their subsistence; and assessment of fluxes of PTS to these environments via selected rivers and the atmosphere. (3) Dietary surveys of selected indigenous communities. (4) Study of biomagnification, based on measurements of selected PTS in representative species in food chains important for the traditional diet of indigenous populations. (5) Survey and comparative assessment of pollution levels of the indigenous and general population in selected areas. (6) Dissemination of results to all relevant stakeholders.
1. Research area # 2 in the 1998/99 Announcement of Opportunity by CIFAR, "Study of anthropogenic influences on the Western Arctic/Bering Sea Ecosystem", and 2. Research area #4 in the 1998/99 Announcement of Opportunity by CIFAR, "Contaminant inputs, fate and effects on the ecosystem" specifically addressing objectives a-c, except "effects." a. "Determine pathways/linkages of contaminant accumulation in species that are consumed by top predators, including humans, and determine sub-regional differences in contaminant levels..." b. "Use an ecosystems approach to determine the effects of contaminants on food web and biomagnification." c. "Encourage local community participation in planning and implementing research strategies." The objectives of Phase I, Human Ecology Research are to: 1. Document reliance by indigenous arctic marine communities in Canada, Alaska and Russia on arctic resources at risk from chemical pollutants; and, 2. Incorporate traditional knowledge systems of subsistence harvesting. The human ecology components of the project were conducted within the frameworks of indigenous environmental knowledge and community participation. Using participatory mapping techniques, semi-structured interviews and the direct participation of community members in research design, data collection and implementation, research and data collection on the human ecology of indigenous arctic marine communities was undertaken in the communities of Holman, NWT (1998), Wainwright, Alaska (1999), and is underway in Novoe Chaplino, Russia. (2000).
The objective of this project is to obtain a comprehensive and verifiable information on contaminant exposure of indigenous populations of the Russian Barents Region through aquatic food. Subgoals: To evaluate the contaminant uptakes for blood samples that have been collected by health workers from local indigenous populations, focusing on cord blood levels. To connect and integrate the project and protocols with the ongoing cord blood study of indigenous peoples of Alaska and Eastern Russia, lead by dr. Jim Berner and others in the region.
Risk determination for traditional food should consider the potential risks from exposure to contaminants and the sociocultural, nutritional, economic and spiritual benefits associated with traditional food. Factors which influence Inuit food choices should be further analyzed to add precision to the evaluation of risks and benefits of traditional food consumption. The data of the Nutrition Santé Québec Survey are a potential source for this type of analysis since data are available and are representative of the entire region of Nunavik. The proposed work consists of more detailed analysis of the existing data on food intake among the Inuit of Nunavik collected in 1992 during the Santé Québec Health Survey and to extend our analyses to contaminant intakes. Intakes (mean and median) of traditional and market foods, nutrients and contaminants will be calculated according to the makeup/structure of households, the level of education, the level of household income and coastal place of residence. Intakes will also calculated according to the social assistance status of Inuit. Among Inuit depending on social assistance, comparisons of food, nutrient and contaminant intakes according to the time of the month in which the survey took place will be examined. Statistical comparisons of food intakes will also be done between Inuit who stated having lacked food in the month prior to the survey and those who did not. Nutrient intakes will be compared with daily recommended nutrient intakes (RNI) based on nutritional recommendations issued by Health Canada. More detailed and reliable information regarding sociodemographic factors affecting food intake, nutritional status and contaminant exposure among Inuit will help to orient public health authorities in the promotion of health through traditional food consumption.
Among all contaminants present in different aquatic ecosystems in Canada, methylmercury (MeHg) is a major source of concern for public health. Currently, it is difficult to reliably determine the threshold of MeHg concentration at which functional changes occur. On the other hand, it is well known that chronic MeHg exposure is very harmful for the nervous system. Oxidative reactions appear to be of central importance to mercury toxicity. Therefore, it is important and urgent to determine with precision the minimal dose at which oxidative stress and neurotoxic effects can be identified since some studies suggest that MeHg toxicity can be detected at level far below the minimal exposure level proposed by the World Health Organization. The main goal of this project is to investigate the effects of mercury on sensorimotor functions in the population of Salluit. We will examine the relationship between the level of MeHg and sensorimotor performance. Afterwards, specific recommendations based on quantitative evidence will be made to the concerned populations so as to diminish long-term risk on health.
Short Term i) to provide additional information for use in updating health advisories. Long Term i)to investigate the fate and effects of contaminant deposition and transport to the Yukon, allowing Northerners to better manage the issue of contaminants. ii)to determine levels of contaminants for use in long term trend monitoring.
Analysis of cultural change and adapatation in northern Sweden using archaeological, paleobotanical, paleoentomological and soil chemical data. Involves 14 regional studies througout northern Sweden from 60 - 66 degrees north latitude.
1. Continue to investigate spatial and temporal patterns in mercury concentrations in fish in lakes in the Mackenzie River Basin with a focus on predatory fish in smaller lakes near Fort Simpson but also including Great Bear Lake 2. Assess temporal trends in mercury concentrations and influencing factors, e.g., climate change 3. Conduct sediment core studies as opportunities allow to characterize long-term trends in mercury deposition and productivity 4. Integrate the findings of this study with our mercury trend monitoring in Great Slave Lake and the western provinces.
The main purpose of this research is to examine the consequences of in utero exposure to PCBs on Inuit infants, from birth to 11 months of age. Of particular interest is the impact of PCBs and mercury exposure on newborn’s thyroid hormones, physical growth, physical and central nervous system maturity, on infant’s overall health, mental, psychomotor and neurobehavioral development, and on functional and neural impairment in the domains of visual and spatial information processing. The proposed project is designed to replicate and extend previous findings by studying a more highly exposed cohort of infant, and using new infant assessment paradigms that have been linked to specific brain regions and neural pathways and, therefore, have a potential to provide information regarding possible mechanisms of action. The second objective of this research is to document the exposure to heavy metals, organochlorines and polyunsaturated fatty acids of newborns from selected communities in Nunavik. This ongoing effect study provides the opportunity to perform long time trend analysis of human exposure (data available for same communities since 1993).
In Greenland lead exposure to humans from the local diet in general is very low. But the use of lead shot introduces a significant amount of lead in locally hunted birds. Human exposure to lead from the use of lead shot will be assessed by analysing breast meat from thick-billed murre and common eider. In common eider, the Greenland species which is suspected to be most exposed to lead toxicity, the frequency of embedded shots and of shots in the gizzard will be studied, and wing bones will be analysed for lead as an indicator of long-term exposure to lead.
Specifically, this project aims to: 1. Review and organize the reported social and cultural benefits and risks associated with a traditional diet and related activities (hunting, preparation, consumption); 2. Develop and apply a survey tool to increase our understanding of the determinants of diet behavior; 3. Develop a conceptual framework for the ordered presentation of this information; 4. Link this framework with those organizing information on health and economic benefits and risks associated with traditional foods.
The objectives of the centre are: - to provide access to data from recent human health monitoring and research activities conducted as part of the AMAP national implementation plans. - to provide a means to ensure treatment of data in a consistent manner, uniform statistical analysis etc., including application of objective quality assurance procedures. - to begin the process of establishing a long-term archive of relevant Arctic monitoring data for use in future assessments of temporal trends etc. - to meet the ministerial request from the Alta Conference to include human health data in the AMAP thematic data centres.