The AMAP Project Directory (AMAP PD) is a catalog of projects and activities that contribute to assessment and monitoring in the Arctic. The Arctic Monitoring and Assessment Programme (AMAP), is a working group under the Arctic Council, tasked with monitoring and asessing pollution, climate change, human health and to provide scientific advice as a basis for policy making.
The directory, which is continously updated, documents national and international projects and programmes that contribute to the overall AMAP programme, and provides information on data access as well as a gateway for the AMAP Thematic Data Centres.
Other catalogs through this service are ENVINET, SAON and SEARCH, or refer to the full list of projects/activities.
To edit or add records to any of the catalogs, log in or create an account.
i. Determine mercury, metals and persistent organic contaminant pollutants (POPs) concentrations in lake trout harvested from two locations (West Basin near Hay River, East Arm at Lutsel K’e) and burbot harvested from one location (West Basin at Fort Resolution) in 2015 to further extend the long-term (1993-2013 (POPs) and 1993-2014 (mercury)) database. ii. Determine POPs trends in lake trout and burbot using our 1993-2014 data base. iii. Continue our investigations of mercury trends in predatory fish to include lakes in the Deh Cho, Great Bear Lake, and other lakes as opportunities arise. iv. Participate in and contribute information to AMAP expert work groups for trend monitoring for POPs and mercury. v. Integrate our mercury trend assessments with studies we are conducting in the western provinces as part of Canada’s Clear Air Regularly Agenda for its Mercury Science Assessment. vi. Work with communities in capacity building and training.
The general objective of the human health sub-programme is to protect and promote the health of Arctic peoples, especially children, with respect to exposure environmental contaminants.
Elevated levels of 137Cs caused by previous atmospheric nuclear weapons tests fallout and the Chernobyl accident have been observed in Finnmark, Northern Norway. Due to the large consumption of potentially contaminated reindeer meat, whole body measurements of 137Cs levels in reindeer herders have been performed since 1965.
The objective is to develope a tool that can be used as individual dietary advice. The tool can be used by health services, but also by individual internet users. The exposure can be calculate based on the food item intake, and the exposure will be compared with tolerable-acceptable intake limits
In Greenland the human intake of mercury and cadmium from local diet is high. In an autopsy study, mercury and cadmium concentrations in humans has been analyzed. This study will make it possible to assess to what extent the high intake of mercury and cadmium is reflected in human tissue.
Radioactivity in the Arctic environment is a central topic within environmental pollution issues. Increased discharges of technetium-99 (99Tc) from the nuclear fuel reprocessing plant Sellafield to the Irish Sea has caused public concerns in Norway. This project (acronym “RADNOR”) includes model and monitoring assessments and improvements, assessment of current and novel abiotic and biotic dose parameters and dose calculations and use of realistic climatic background scenarios in order to assess corresponding consequences for transport of radioactive pollutants. RADNOR consists of three main components: part 1, the determination of levels and time series of 99Tc in benthic and pelagic food webs; part 2, containing working packages on improvements to the understanding of site-specific and time-dependent sediment-water interactions (KD), kinetics of accumulation (CF) and body distribution in marine organisms, including contaminated products for the alginate industry and part 3, dealing with model hindcasts and observations for spreading of 99Tc from the Sellafield nuclear reprocessing plant during the 1990s and improvement of the NRPA dose assessment box model. From the model outputs, doses to man and environment will be calculated resulting in a valuable database for use within environmental management and for decision makers.
Brief: Assessment of the significance of aquatic food chains as a pathways of exposure of indigenous peoples to PTS, assessment of the relative importance of local and distant sources, and the role of atmospheric and riverine transport of PTS in Northern Russia. Project rationale and objectives: (1) To assess levels of Persistent Toxic Substances (PTS) in the environment in selected areas of the Russian North, their biomagnification in aquatic and terrestrial food chains, and contamination of traditional (country) foods that are important components of the diet of indigenous peoples. (2) To assess exposure of indigenous peoples in the Russian North to PTS, and the human health impacts of pollution from local and remote sources, as a basis for actions to reduce the risks associated with these exposures. (3) To inform indigenous peoples about contamination by PTS of their environment and traditional food sources, and empower them to take appropriate remedial actions to reduce health risks. (4) To enhance the position of the Russian Federation in international negotiations to reduce the use of PTS, and to empower the Russian Association of Indigenous Peoples of the North (RAIPON) to participate actively and fully in these negotiations. Project activities to achieve outcomes: (1) Inventory of local pollution sources in the vicinities of selected indigenous communities. (2) Survey of levels and fluxes of PTS in riverine and coastal marine environment important for indigenous peoples living in these environments and using them for their subsistence; and assessment of fluxes of PTS to these environments via selected rivers and the atmosphere. (3) Dietary surveys of selected indigenous communities. (4) Study of biomagnification, based on measurements of selected PTS in representative species in food chains important for the traditional diet of indigenous populations. (5) Survey and comparative assessment of pollution levels of the indigenous and general population in selected areas. (6) Dissemination of results to all relevant stakeholders.
White whale (Delphinapterus leucas) blubber samples from three of the five different Alaskan stocks - Cook Inlet (n = 20), Eastern Chukchi Sea (n = 19) and Eastern Beaufort Sea (n = 2) - were analyzed for levels and patterns of chemical contaminants. Blubber of these whales contained sum PCBs, sum DDTs, sum chlordanes, HCB, dieldrin, mirex, *toxaphene and *HCH, generally in concentration ranges similar to those found in white whales from the Canadian Arctic and lower than those in white whales from the highly contaminated St. Lawrence River. The males of the Cook Inlet and Eastern Chukchi Sea stocks had higher mean concentrations of all contaminant groups than did the females of the same stock, a result attributable to the transfer of these organochlorine contaminants (OCs) from the mother to the calf during pregnancy and during lactation following birth. Principal components analysis of patterns of contaminants present in blubber showed that Cook Inlet stock appeared to have identifiable contaminant patterns that allowed the stock to be distinguished from the others. Our results also showed that blubber from the three Alaskan stocks was a source of contaminant exposure for human subsistence consumers, but the health risks from consumption are currently unknown.
According to the national residue control programme heavy metals (lead, cadmium, mercury) and organochlorine compounds (HCH, HCB, DDT, PCB, etc) are analyzed from the samples. Investigations are done according to the Council Directive 96/23/EC.
Levels of selected contaminants have been determined in sediment, blue mussel, seeweed and fish from harbour areas in Harstad, Tromsø, Hammerfest and Honningsvåg in northern Norway. The following contaminants were included in the study: PAH, PCB, 5CB, HCB, OCS, HCH, DDT, DDE, DDD, TBT, Cd, Cu, Hg, Pb, Zn and Li. A few samples were also analysed for dioxines (PCDD and PCDF), non-ortho PCBs and PCN. The results were compared with the Norwegian State Pollution Control Authorities classification system for marine sediments (Molvær et al. 1997). Elevated (and in most cases very high) levels of most of the measured contaminants were found in all the investigated harbour areas.
Risk determination for traditional food should consider the potential risks from exposure to contaminants and the sociocultural, nutritional, economic and spiritual benefits associated with traditional food. Factors which influence Inuit food choices should be further analyzed to add precision to the evaluation of risks and benefits of traditional food consumption. The data of the Nutrition Santé Québec Survey are a potential source for this type of analysis since data are available and are representative of the entire region of Nunavik. The proposed work consists of more detailed analysis of the existing data on food intake among the Inuit of Nunavik collected in 1992 during the Santé Québec Health Survey and to extend our analyses to contaminant intakes. Intakes (mean and median) of traditional and market foods, nutrients and contaminants will be calculated according to the makeup/structure of households, the level of education, the level of household income and coastal place of residence. Intakes will also calculated according to the social assistance status of Inuit. Among Inuit depending on social assistance, comparisons of food, nutrient and contaminant intakes according to the time of the month in which the survey took place will be examined. Statistical comparisons of food intakes will also be done between Inuit who stated having lacked food in the month prior to the survey and those who did not. Nutrient intakes will be compared with daily recommended nutrient intakes (RNI) based on nutritional recommendations issued by Health Canada. More detailed and reliable information regarding sociodemographic factors affecting food intake, nutritional status and contaminant exposure among Inuit will help to orient public health authorities in the promotion of health through traditional food consumption.
Among all contaminants present in different aquatic ecosystems in Canada, methylmercury (MeHg) is a major source of concern for public health. Currently, it is difficult to reliably determine the threshold of MeHg concentration at which functional changes occur. On the other hand, it is well known that chronic MeHg exposure is very harmful for the nervous system. Oxidative reactions appear to be of central importance to mercury toxicity. Therefore, it is important and urgent to determine with precision the minimal dose at which oxidative stress and neurotoxic effects can be identified since some studies suggest that MeHg toxicity can be detected at level far below the minimal exposure level proposed by the World Health Organization. The main goal of this project is to investigate the effects of mercury on sensorimotor functions in the population of Salluit. We will examine the relationship between the level of MeHg and sensorimotor performance. Afterwards, specific recommendations based on quantitative evidence will be made to the concerned populations so as to diminish long-term risk on health.
Short Term i) to provide additional information for use in updating health advisories. Long Term i)to investigate the fate and effects of contaminant deposition and transport to the Yukon, allowing Northerners to better manage the issue of contaminants. ii)to determine levels of contaminants for use in long term trend monitoring.
Humans in Greenland are exposed to higher intakes of some contaminants from the diet than in most of Europe and North America. The objective of the study is to screen the most important local diet items in West Greenland for cadmium, mercury, selenium and organochlorine contaminants. Mammals, birds, fish and invertebrates, mainly marine species are being analysed.
In Greenland lead exposure to humans from the local diet in general is very low. But the use of lead shot introduces a significant amount of lead in locally hunted birds. Human exposure to lead from the use of lead shot will be assessed by analysing breast meat from thick-billed murre and common eider. In common eider, the Greenland species which is suspected to be most exposed to lead toxicity, the frequency of embedded shots and of shots in the gizzard will be studied, and wing bones will be analysed for lead as an indicator of long-term exposure to lead.
The objectives of this project are A) to determine coplanar polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), brominated diphenyl ethers (BDPEs), chlorophenolic compounds and chloroparaffins in air from arctic monitoring stations; and B) to search for other "new" chemicals in the arctic environment, not currently monitored by Canada's Northern Contaminants Program (NCP) but of potential concern based on known persistence, extent of usage and toxicology.
The objectives of the centre are: - to provide access to data from recent human health monitoring and research activities conducted as part of the AMAP national implementation plans. - to provide a means to ensure treatment of data in a consistent manner, uniform statistical analysis etc., including application of objective quality assurance procedures. - to begin the process of establishing a long-term archive of relevant Arctic monitoring data for use in future assessments of temporal trends etc. - to meet the ministerial request from the Alta Conference to include human health data in the AMAP thematic data centres.