The AMAP Project Directory (AMAP PD) is a catalog of projects and activities that contribute to assessment and monitoring in the Arctic. The Arctic Monitoring and Assessment Programme (AMAP), is a working group under the Arctic Council, tasked with monitoring and asessing pollution, climate change, human health and to provide scientific advice as a basis for policy making.
The directory, which is continously updated, documents national and international projects and programmes that contribute to the overall AMAP programme, and provides information on data access as well as a gateway for the AMAP Thematic Data Centres.
Other catalogs through this service are ENVINET, SAON and SEARCH, or refer to the full list of projects/activities.
To edit or add records to any of the catalogs, log in or create an account.
National Environmental Monitoring Programme in Sweden. The objective of the project is to follow time trends of available metals in vegetation and reindeer (Rangifer tarandus) in Lapland, Sweden. Analysed metals in liver and muscle samples are: Al, Cd, Co, Cr, Cu, Mg, Mn, Ni,Hg, Pb, Zn. Analyses were performed on a continuous basis until 2005. Since then there has only been a collection of samples to be stored in the Environmental Specimen Bank (ESB) at the Swedish Museum of Natural History (NRM).
1) To determine tissue residue levels of organochlorines and metals in arctic fox feeding in or near an arctic coastal environment. 2) To assess whether or not residue levels found in arctic fox pose a potential wildlife health risk. 3) As part of a pilot project, to determine residue levels and assess potential wildlife health risk to wolverines feeding in or near a coastal environment.
The possibility of restoring the salmon stocks in the Tuloma system is assessed by collecting background information on the river system: present fish fauna, habitat quality, migratory routes etc. Planning the restoration including technical and management aspects is under way.
Monitoring of the salmon stocksof the Teno and Näätämö river systems is based on long term data collection on juvenile salmon production, biological characteristics of the spawning stock, origin of salmon (wild/reared) and statistics on fishery and catches. Information on other fish species than salmon is also available.
Det danske bidrag til Arctic Monitoring and Assessment Programme (AMAP) under Arktisk Råd har dokumenteret at østgrønlandske isbjørne er mest forurenede mht. fedtopløselige organiske miljøgifte. Siden 1999 har Danmarks Miljøundersøgelsers Afdeling for Arktisk Miljø (DMU-AM) undersøgt isbjørnesundheden i Østgrønland via et unikt samarbejde med lokale bjørnefangere, og et tværfagligt samarbejde med biologisk, veterinær og human medicinske fagområder i Grønland og Danmark samt internationale samarbejdsrelationer med Canada, Norge og Tyskland. Undersøgelserne er mundet ud i en lang række af række internationale videnskabelige publikationer som dokumenterer tidstrend i miljøbelastningen af de grønlandske og norske isbjørne og sammenhængen mellem forurening og helbredseffekter på isbjørne. Disse har fået omtalt presseomtale verden over.
Organochlorines (OCs) concentrate through the arctic marine food webs and are stored in the adipose tissue due to their high lipophilic and persistent characteristics. The polar bears receive high doses of POPS through their diet and a controlled experimt was need to resolve effect on the immune system and effects on internal organs. Such a controlled experiment on sledge dogs as a replacement test organism for the polar bear was conducted from 2004-2006 to investigate dose-response effects.
The aim is to monitor the Lake Myvatn and the river Laxá ecosystem for (1) detecting trends, (2) detecting background variability in the system, (3) assess the efficiency of management measures, (4) observe perturbations in order to generate hypotheses about causal relationships.
Brief: Assessment of the significance of aquatic food chains as a pathways of exposure of indigenous peoples to PTS, assessment of the relative importance of local and distant sources, and the role of atmospheric and riverine transport of PTS in Northern Russia. Project rationale and objectives: (1) To assess levels of Persistent Toxic Substances (PTS) in the environment in selected areas of the Russian North, their biomagnification in aquatic and terrestrial food chains, and contamination of traditional (country) foods that are important components of the diet of indigenous peoples. (2) To assess exposure of indigenous peoples in the Russian North to PTS, and the human health impacts of pollution from local and remote sources, as a basis for actions to reduce the risks associated with these exposures. (3) To inform indigenous peoples about contamination by PTS of their environment and traditional food sources, and empower them to take appropriate remedial actions to reduce health risks. (4) To enhance the position of the Russian Federation in international negotiations to reduce the use of PTS, and to empower the Russian Association of Indigenous Peoples of the North (RAIPON) to participate actively and fully in these negotiations. Project activities to achieve outcomes: (1) Inventory of local pollution sources in the vicinities of selected indigenous communities. (2) Survey of levels and fluxes of PTS in riverine and coastal marine environment important for indigenous peoples living in these environments and using them for their subsistence; and assessment of fluxes of PTS to these environments via selected rivers and the atmosphere. (3) Dietary surveys of selected indigenous communities. (4) Study of biomagnification, based on measurements of selected PTS in representative species in food chains important for the traditional diet of indigenous populations. (5) Survey and comparative assessment of pollution levels of the indigenous and general population in selected areas. (6) Dissemination of results to all relevant stakeholders.
Due to the high organochlorine concentrations reported in Arctic top predators, and the potential transport of contaminants with the drifting sea-ice in the Arctic, organisms constituting lower trophic levels living in association with sea-ice have been proposed as susceptible of uptake of high loads of organic pollutants. The present project studies the organochlorine occurrence in organisms living in the marginal ice zone north of Svalbard and in the Fram Strait. This includes both ice fauna (ice-amphipods), zooplankton, polar cod and different seabird species foraging in the marginal ice zone. Our objectives are to investigate: *The bioaccumulation of organochlorines in ice-associated amphipods in relation to diet preference, spatial variation due to sea ice drift route, size, sampling year, uptake and distribution within the body. *Comparison of organochlorine contamination in pelagic and ice-associated organisms at the similar trophic position, to investigate the effect of sea ice as a transporter and concentrator of pollutants. *Spatial variation in zooplankton species, related to differences in water masses and exposure to first year or multi year sea ice. *The contamination load in different seabirds feeding in the marginal ice zone, in relation to diet choice and estimated trophic position, taxonomically closeness and the induction of hepatic CYP P450 enzymes.
According to the national residue control programme heavy metals (lead, cadmium, mercury) and organochlorine compounds (HCH, HCB, DDT, PCB, etc) are analyzed from the samples. Investigations are done according to the Council Directive 96/23/EC.
Risk determination for traditional food should consider the potential risks from exposure to contaminants and the sociocultural, nutritional, economic and spiritual benefits associated with traditional food. Factors which influence Inuit food choices should be further analyzed to add precision to the evaluation of risks and benefits of traditional food consumption. The data of the Nutrition Santé Québec Survey are a potential source for this type of analysis since data are available and are representative of the entire region of Nunavik. The proposed work consists of more detailed analysis of the existing data on food intake among the Inuit of Nunavik collected in 1992 during the Santé Québec Health Survey and to extend our analyses to contaminant intakes. Intakes (mean and median) of traditional and market foods, nutrients and contaminants will be calculated according to the makeup/structure of households, the level of education, the level of household income and coastal place of residence. Intakes will also calculated according to the social assistance status of Inuit. Among Inuit depending on social assistance, comparisons of food, nutrient and contaminant intakes according to the time of the month in which the survey took place will be examined. Statistical comparisons of food intakes will also be done between Inuit who stated having lacked food in the month prior to the survey and those who did not. Nutrient intakes will be compared with daily recommended nutrient intakes (RNI) based on nutritional recommendations issued by Health Canada. More detailed and reliable information regarding sociodemographic factors affecting food intake, nutritional status and contaminant exposure among Inuit will help to orient public health authorities in the promotion of health through traditional food consumption.
Among all contaminants present in different aquatic ecosystems in Canada, methylmercury (MeHg) is a major source of concern for public health. Currently, it is difficult to reliably determine the threshold of MeHg concentration at which functional changes occur. On the other hand, it is well known that chronic MeHg exposure is very harmful for the nervous system. Oxidative reactions appear to be of central importance to mercury toxicity. Therefore, it is important and urgent to determine with precision the minimal dose at which oxidative stress and neurotoxic effects can be identified since some studies suggest that MeHg toxicity can be detected at level far below the minimal exposure level proposed by the World Health Organization. The main goal of this project is to investigate the effects of mercury on sensorimotor functions in the population of Salluit. We will examine the relationship between the level of MeHg and sensorimotor performance. Afterwards, specific recommendations based on quantitative evidence will be made to the concerned populations so as to diminish long-term risk on health.
Short Term i) to provide additional information for use in updating health advisories. Long Term i)to investigate the fate and effects of contaminant deposition and transport to the Yukon, allowing Northerners to better manage the issue of contaminants. ii)to determine levels of contaminants for use in long term trend monitoring.
Case control study of the possible effect of smokinf status on the acumulation of plasma POP in 48 Greenlandic hunters.
Analysis of POP and heavy metals, in men and women (pregnant and non-pregnant), time and spatial trends, lifestyle factors, diet and smoking, biomarkers
Humans in Greenland are exposed to higher intakes of some contaminants from the diet than in most of Europe and North America. The objective of the study is to screen the most important local diet items in West Greenland for cadmium, mercury, selenium and organochlorine contaminants. Mammals, birds, fish and invertebrates, mainly marine species are being analysed.
In Greenland lead exposure to humans from the local diet in general is very low. But the use of lead shot introduces a significant amount of lead in locally hunted birds. Human exposure to lead from the use of lead shot will be assessed by analysing breast meat from thick-billed murre and common eider. In common eider, the Greenland species which is suspected to be most exposed to lead toxicity, the frequency of embedded shots and of shots in the gizzard will be studied, and wing bones will be analysed for lead as an indicator of long-term exposure to lead.
Specifically, this project aims to: 1. Review and organize the reported social and cultural benefits and risks associated with a traditional diet and related activities (hunting, preparation, consumption); 2. Develop and apply a survey tool to increase our understanding of the determinants of diet behavior; 3. Develop a conceptual framework for the ordered presentation of this information; 4. Link this framework with those organizing information on health and economic benefits and risks associated with traditional foods.