The AMAP Project Directory (AMAP PD) is a catalog of projects and activities that contribute to assessment and monitoring in the Arctic. The Arctic Monitoring and Assessment Programme (AMAP), is a working group under the Arctic Council, tasked with monitoring and asessing pollution, climate change, human health and to provide scientific advice as a basis for policy making.
The directory, which is continously updated, documents national and international projects and programmes that contribute to the overall AMAP programme, and provides information on data access as well as a gateway for the AMAP Thematic Data Centres.
Other catalogs through this service are ENVINET, SAON and SEARCH, or refer to the full list of projects/activities.
To edit or add records to any of the catalogs, log in or create an account.
In 2013 a new ecosystem monitoring programme “DiskoBasis” was initiated at Arctic Station on Disko Island, Greenland. The project is partly funded by the Danish Energy Agency. The primary objective of DiskoBasis is to establish baseline knowledge on the dynamics of fundamental physical parameters within the environment/ecosystem around Arctic Station. This initiative extends and complements the existing monitoring carried out at Arctic Station by including several new activities –especially within the terrestrial and hydrological/fluvial field. DiskoBasis include collection of data in the following sub-topics; • Gas flux, meteorology and energy balance • Snow, ice and permafrost • Soil and soil water chemistry • Vegetation phenology • Hydrology -River water discharge and chemistry • Limnology -Lake water chemistry • Marine -Sea water chemistry
Fresh water quality monitoring program is designed to collect long term water quality data from lakes and rivers. It serves EU obligated data collection among other interests. The data is used to detect variation in time in the measured variables and to assess the physiological and chemical state of the water body. The program is managed by the Finnish Environment Institute (SYKE). Regional centres for economic development, transport and the environment are responsible for the field work needed for maintaining the monitoring stations. Monitoring frequency varies between locations from annual to once in three, six or 12 years.
The GeoBasis programme collects data describing the physical and geomorphological environment in Zackenberg, North East Greenland. This includes meteorology, carbon flux and energy exchange, snow cover and permafrost, soil moisture, –chemistry and nutrient balance, hydrology, river discharge and – sediment
Monitoring climatological and hydrological parameters in a low arctic environment.
National Environmental Monitoring in Sweden in the "Air" programme. The objective of the project is to follow climate-changing gases and particles and which effects they could have on the climate of earth. To understand and assess the human effect on the climate, regionally and globally, the atmospheric aerosols and greenhouse gases are monitored. The project aims follow: (i) detecting long-term trends in the carbon dioxide level, as well as trends in the amount or composition of aerosols in the background atmosphere; (ii) provide a basis to study the processes that control the aerosol life cycle from their formation through aging and transformation, until being removed from the atmosphere; (iii) provide a basis to study the processes (sources, sinks, and transport pathways) that control the level of carbon dioxide in the atmosphere; (iv) contribute to the global network of stations that perform continous measurements of atmospheric particles and trace gases to determine their effect on the earths radiation balance and interaction with clouds and climate.
Aerosols, Clouds, and Trace gases Research InfraStructure - ACTRIS is a research infrastructure on the ESFRI roadmap from March 2016. ACTRIS is currently supported by the European Commission Horizon 2020 Research and Innovation Framework Programme (H2020-INFRAIA-2014-2015) from 1 May 2015 to 30 April 2019.
The objectives of ACTRIS Research Infrastructure
Detecting changes and trends in atmospheric composition and understanding their impact on the stratosphere and upper troposphere is necessary for establishing the scientific links and feedbacks between climate change and atmospheric composition.
Anthropogenic 129I discharged from European reprocessing plants has widely dispersed in the Nordic waters including the Arctic. Due to the high solubility and long residence time of iodine in seawater, anthropogenic 129I has become an ideal oceanographic tracer for investigating transport pathways and the exchange of water masses.
Multidisciplinary investigations at the LTER (Long-Term Ecological Research) observatory HAUSGARTEN are carried out at a total of 21 permanent sampling sites in water depths ranging between 250 and 5,500 m. From the outset, repeated sampling in the water column and at the deep seafloor during regular expeditions in summer months was complemented by continuous year-round sampling and sensing using autonomous instruments in anchored devices (i.e., moorings and free-falling systems). The central HAUSGARTEN station at 2,500 m water depth in the eastern Fram Strait serves as an experimental area for unique biological in situ experiments at the seafloor, simulating various scenarios in changing environmental settings. Time-series studies at the HAUSGARTEN observatory, covering almost all compartments of the marine ecosystem, provide insights into processes and dynamics within an arctic marine ecosystem and act as a baseline for further investigations of ongoing changes in the Fram Strait. Long-term observations at HAUSGARTEN will significantly contribute to the global community’s efforts to understand variations in ecosystem structure and functioning on seasonal to decadal time-scales in an overall warming Arctic and will allow for improved future predictions under different climate scenarios.
The GeoBasis programme collects data describing the physical and geomorphological environment in Zackenberg, North East Greenland. This includes CO2-flux, snowcover and permafrost, soil moisture, –chemistry and nutrient balance, hydrology, river discharge and –sediment. GeoBasis also supports the ClimateBasis programme with service and datahandling during the field season.
i. Determine mercury, metals and persistent organic contaminant pollutants (POPs) concentrations in lake trout harvested from two locations (West Basin near Hay River, East Arm at Lutsel K’e) and burbot harvested from one location (West Basin at Fort Resolution) in 2015 to further extend the long-term (1993-2013 (POPs) and 1993-2014 (mercury)) database. ii. Determine POPs trends in lake trout and burbot using our 1993-2014 data base. iii. Continue our investigations of mercury trends in predatory fish to include lakes in the Deh Cho, Great Bear Lake, and other lakes as opportunities arise. iv. Participate in and contribute information to AMAP expert work groups for trend monitoring for POPs and mercury. v. Integrate our mercury trend assessments with studies we are conducting in the western provinces as part of Canada’s Clear Air Regularly Agenda for its Mercury Science Assessment. vi. Work with communities in capacity building and training.
GAW serves as an early warning system to detect further changes in atmospheric concentrations of greenhouse gases and changes in the ozone layer, and in the long-range transport of pollutants, including acidity and toxicity of rain as well as the atmospheric burden of aerosols.
Hydrometeorological monitoring program produces real time information on precipitation and snow water equivalent. Information is utilized in modeling and forecasting floods and snow load. As part of the program, information of evaporation is produced with WMO standards. The program is coordinated by Finnish Environment Institute (SYKE). Finnish meteorological institute and Lapland regional centre for economic development, transport and the environment manage measurements and field work.
Hydrological monitoring aims produce real time information of water level and discharge, ice thickness including freeze-up and break-up in winter from a network of monitoring stations. Monitoring data is utilized in water resource planning, water management and flood damage prevention. Monitoring is coordinated by Finnish Environmental Institute (SYKE).
Monitoring of the water quality reflecting long-range transboundary air pollution including acidifying compounds, metals and POPs, and climatic change. Part of the sites are also including in biological monitoring. Monitoring sites are the most upland lakes and they are not under any significant human impact. Information is distributed to the UN Convention on Long-range Transboundary Air Pollution. Monitoring is managed by Finnish Environmental Institute (SYKE).
Monitoring follows groundwater level and quality as well as changes in soil humidity and frost depth in winter.
In the Arctic the warming climate is expected to increase the meltning of glaciers, reducing the permafrost and increase the biologial activities. This may have consequences for the transportations of Hg from the terrestrcal ecosystems to the marine coastal areas. The project will investigate the influence of warming climate on the transportation of Hg to marine cooastal areas.
Det danske bidrag til Arctic Monitoring and Assessment Programme (AMAP) under Arktisk Råd har dokumenteret at østgrønlandske isbjørne er mest forurenede mht. fedtopløselige organiske miljøgifte. Siden 1999 har Danmarks Miljøundersøgelsers Afdeling for Arktisk Miljø (DMU-AM) undersøgt isbjørnesundheden i Østgrønland via et unikt samarbejde med lokale bjørnefangere, og et tværfagligt samarbejde med biologisk, veterinær og human medicinske fagområder i Grønland og Danmark samt internationale samarbejdsrelationer med Canada, Norge og Tyskland. Undersøgelserne er mundet ud i en lang række af række internationale videnskabelige publikationer som dokumenterer tidstrend i miljøbelastningen af de grønlandske og norske isbjørne og sammenhængen mellem forurening og helbredseffekter på isbjørne. Disse har fået omtalt presseomtale verden over.
To monitor effects of hebivore grazing in established exclosures in west Greenland on diversity of plants and microarthropods in soil. One site in central west Greenland with caribou and one site in southern Greenland with sheep.
The IPY-project ‘COPOL’ has a main objective of understanding the dynamic range of man-made contaminants in marine ecosystems of polar regions, in order to better predict how possible future climate change will be reflected in levels and effects at higher trophic levels. This aim will be addressed by 4 integrated work packages covering the scopes of 1) food web contaminant exposure and flux, 2) transfer to higher trophic levels and potential effects, 3) chemical analyses and screening, 4) synthesis and integration. To study the relations between climate and environmental contaminants within a project period of four years, a “location-substitutes-time”-approach will be employed. The sampling is focussed towards specific areas in the Arctic, representing different climatic conditions. Two areas that are influenced differently by different water masses are chosen; the Kongsfjord on the West-coast of Spitzbergen (79N, 12 E) and the Rijpfjord North-East of Svalbard (80N, 22 E). The main effort is concentrated in the Kongsfjord. This fjord has been identified as particularly suitable as a study site of contaminants processes, due to the remoteness of sources, and for influences of climatic changes, due to the documented relation between Atlantic water influx and the climatic index North Atlantic Oscillation (NAO). The water masses of the Rijpfjord have Arctic origin and serves as a strictly Arctic reference. Variable Atlantic water influx will not only influence abiotic contaminant exposure, but also food web structure, food quality and energy pathways, as different water masses carry different phyto- and zooplankton assemblages. This may affect the flux of contaminants through the food web to high trophic level predators such as seabirds and seals, due to altered food quality and energy pathways.
The Nuuk-Basic project aims to establish a climate monitoring programme on the westcoast of Greenland. During two workshops, one being in Nuuk with field survey, framework for a future climate monitoring programme will be established. The programme builds on the concept and institutions already performing climate monitoring in NE-Greenland through ZERO (Zackenberg Ecological Research Operations).