USA: projects/activities

Directory entires that have specified USA as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 14 of 14
1. NOAA + NASA remote sensing of climate variables (NOAA + NASA remote sensing)

Both NOAA and NASA operate satellites with cover¬age of the Arctic region. The major observations and products are: 1. Daily, near real-time plots of surface, cloud, and radiative properties from AVHRR; 2. Near real-time MODIS and AVHRR polar winds; 3. Daily, near real-time plots of clear sky, low-level temperature inversions from MODIS; 4. Daily profile plots of Arctic temperature, humid-ity and winds; 5. Near-daily plots of surface winds over open water; and 6. Surface temperatures for land, sea and sea ice.

Climate Sea ice Atmosphere
2. NWS Arctic activities

More information about NWS observing activities will be available in due course Alaska Region Headquarters, http://www.arh.noaa.gov/ Weather station list and real-time observations, http://www.arh.noaa.gov/obs.php Marine observations, http://www.ndbc.noaa.gov/maps/Alaska.shtml Hydrology – Alaska Pacific River Forecast Center, http://aprfc.arh.noaa.gov/

Climate Atmosphere
3. NOAA Arctic Atmospheric Observatories

More information about the following long-term observing activities will be available in due course

Climate Atmosphere
4. Atmospheric Baseline Observatories – Barrow, Alaska

More information about the following long-term observing activities will be available in due course

Climate Atmosphere
5. Alaska Ocean Observing System (AOOS)

To develop a coastal and ocean observing system in the Alaska region that meets the needs of multiple stakeholders by (1) serving as a regional data center providing data integration and coordination; (2) identifying stakeholder and user priorities for ocean and coastal information; (4) working with federal, state and academic partners to fill those gaps, including by AOOS where appropriate. Main gaps: AOOS and the data center are statewide activities, but thus far, available funding has limited observations and models primarily the Gulf of Alaska.

Climate Oceanography Atmosphere Human health Ecosystems
6. Automated Surface Observing System - Alaska (ASOS)

More information about the following aviation meteorology observing activities will be available in due course

Climate Atmosphere
7. Kanuti National Wildlife Refuge (Kanuti NWR) (Kanuti NWR)

1) Annual monitoring of molting Greater White-fronted Geese (Interior refuges) 2) Waterfowl (primarily) breeding pair survey (MBM- done 1997, 2008-09) 3) Breeding Bird Survey (2 routes; annual, though not in 2009) 4) Alaska Landbird Monitoring Survey (2 plots; biennial) 5) Refuge moose population survey (annual) 6) Refuge wolf survey (annual as conditions allow; minimum census) 7) Henshaw Creek fish weir (annual; TCC = operator) 8) Stream gages (operational Oct 2009; will operate at least 6 years) 9) Snow markers (6 on refuge; checked monthly in winter; statewide??)

Climate Human health Ecosystems
8. Yukon Flats National Wildlife Refuge

To inventory and monitor resources of the Yukon Flats Basin to achieve refuge purposes.

Climate Human health Ecosystems
9. Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) (ACRF)

The Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) is a multi-platform national scientific user facility, with instruments at fixed and varying locations around the globe for obtaining continuous field measurements of climate data. Each ACRF site uses a leading edge array of cloud- and aerosol-observing instruments to record long-term continuous atmospheric and surface properties that affect cloud formation and radiation transport through the atmosphere. The ARCF also provides shorter-term (months rather than years) measurements with its two mobile facilities (AMFs) and its aerial measurements. Network type: - Atmosphere, with a focus on the impact of clouds and aerosol on the Earth’s radiation budget. - Location: Primary site: Barrow, Alaska, 71° 19' 23.73" N, 156° 36' 56.70" W Secondary site: Atqasuk, Alaska, 70° 28' 19.11" N, 157° 24' 28.99" W - Community-based: No.

Climate Atmosphere
10. Polar Exchange at the Sea Surface (POLES)

Our broad area of enquiry is the role of polar regions in the global energy and water cycles, and the atmospheric, oceanic and sea ice processes that determine that role. The primary importance of our investigation is to show how these polar processes relate to global climate.

Atmospheric processes polar cloud dynamics ice dynamics surface radiation and cloud forcing Climate variability Climate Sea ice Climate change surface heat and mass balance polar atmospheric processes ice-ocean models arctic climate Modelling Ice Oceanography Arctic SEARCH Atmosphere Ocean currents cryosphere ice thickness
11. The Role of Polar Oceans in Contemporary Climate Change

Our central geophysical objective is to determine how sea ice and the polar oceans respond to and influence the large-scale circulation of the atmosphere. Our primary technical objective is to determine how best to incorporate satellite measurements in an ice/ocean model.

Atmospheric processes ice dynamics mass balance of Arctic sea ice Geophysics Climate variability Climate Sea ice Climate change freshwater balance of the Arctic Ocean polar atmospheric processes ice-ocean models arctic climate Modelling Ice Oceanography Arctic SEARCH Atmosphere Ocean currents ice thickness
12. A 30-Year Sea Ice Data Set from Satellite Microwave Radiometers

The project consists of two parts: the generation of a data set of sea ice extents and areas, and associated scientific analyses. The objective of the first part is to produce a 30-year, research quality sea ice data set for climate change studies. The data set will build on an existing 18-year data set derived from satellite passive-microwave observations and currently archived at the National Snow and Ice Data Center in Boulder, CO. We will extend this data set by using historical data from the 1970's from the National Ice Center and new data from DMSP Special Sensor Microwave Imagers and the upcoming EOS-PM Advanced Microwave Scanning Radiometer. These data sets will be cross-calibrated to ensure a consistent 30-year data set following methods developed earlier and based on matching the geophysical parameters during periods of sensor overlap. The principal products will be Arctic and Antarctic sea ice extents and areas, derived from sea ice concentration maps. The second part of the proposal will center on the analysis and use of the 30-year data set. The science objectives are (1) to define and explain the hemispheric, regional, seasonal, and interannual variabilities and trends of the Arctic and Antarctic sea ice covers and (2) to understand any observed hemispheric asymmetries in global sea ice changes. Hemispheric sea ice cover asymmetries have been found in the existing 18-year record and have also been suggested from some model experiments simulating future conditions assuming a gradual increase in atmospheric CO2. We will examine the proposed 30-year record to determine the degree and nature of the hemispheric asymmetry in it and to place the sea ice observations in the context of other climate variables through comparisons with simulations from the NOAA Geophysical Fluid Dynamics Laboratory and Hadley Centre climate models.

Climate variability Climate Sea ice Arctic SEARCH
13. International Arctic Buoy Program

To regularly deploy buoys in the Arctic to measure atmospheric temperature and pressure at various drifting sites.

Atmospheric processes Climate Arctic SEARCH Atmosphere
14. Atmospheric Radiation Measurement (ARM) Program

The North Slope of Alaska/Adjacent Arctic Ocean Cloud and Radiation Testbed (CART) site is providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. The NSA/AAO site is centered at Barrow and extends to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (perhaps to Oliktok). The Adjacent Arctic Ocean was probed by the Surface Heat Budget of the Arctic (SHEBA) experiment, a multi-agency program led by the National Science Foundation and the Office of Naval Research. SHEBA involved the deployment of an instrumented ice camp within the perennial Arctic Ocean ice pack that began in October 1997 and lasted for 12 monthsB. For the planning period covered here, a major focus will be on completing the facilities at Atqasuk, 100 km inland from Barrow. Presently, the instrumentation shelters are located on a gravel pad turn-around at the end of a dead end road between the town of Atqasuk and its airport. To comply with the terms of our land lease, we will construct a platform on pilings adjacent to the gravel pad and move the shelters off the roadway and onto the platform. The platform will permit long-term deployment of the Atqasuk instrumentation in a manner very similar to that at Barrow. Sky radiation (SKYRAD) radiometric instrumentation will be mounted above the level of the roof of the shelters so as to avoid shadowing, and the ground radiation (GNDRAD) instrumentation will be mounted on a tip tower such as the one about to be installed at Barrow. At Atqasuk, during the CY 2000 melt season, the science team heat flux study begun during the CY 1999 melt season will resume in spring with the redeployment of a laser scintillometer. In addition, heat flux measurements will begin near Barrow on the shore of the Beaufort Sea in the same time frame. Also at Barrow, a mini-IOP is planned during spring 2000 that will bring together two extended-range atmospheric emitted radiance interferometers (ER-AERIs) (including the one permanently installed at Barrow), one normal range downward-looking AERI (for snow characterization), and one or two other extended-range upward-looking Fourier transform infrared spectrometers (FTIRs). Various other less major enhancements will be made to the instrumentation suites of both Barrow and Atqasuk. Both facilities, however, will continue to be strongly focused on Instantaneous Radiative Flux (IRF) experiments for this planning period. A Single-Column Model (SCM) experiment utilizing either subscale or full scale aircraft that had been proposed for the NSA/AAO for CY2000 will be put off for a year.

Climate variability Climate Climate change SEARCH