Directory entires that have specified United Kingdom as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.
It is also possible to browse and query the full list of projects.
To edit or add records to any of the catalogs, log in or create an account.
IRIS brings together several EU partners to investigate methods to estimate sea ice ridging severity from satellite imagery and assess the impact of these ridges on icebreaker transit times, particularly in the Baltic Sea. The consortium is largely Finnish and is co-ordinated by the Helsinki Technical University. SAMS’ role is to study statistical properties of synthetic aperture radar (SAR) images and relate these to ridge parameters.
-Quantify changes in ice dynamics and characteristics resulting from the switch in AO phase -Establish a climate record for the region north of Greenland through the retrieval and analysis of sediment cores -Improve an existing dynamic-thermodynamic sea ice model, focusing on the heavily deformed ice common in the region -Relate the region-specific changes which have occurred to the larger-scale Arctic variablity pattern -Place the recent ice and climate variability for this critical region into the context of long term climate record, as reconstructed from sediment cores
SITHOS (Sea Ice Thickness Observation System) is also a three-year EU Framework 5 project. The Nansen Environmental Remote Sensing Centre (NERSC) will co-ordinate six institutions in the development of an integrated system for measuring sea ice thickness in the Arctic Ocean. Several approaches for obtaining ice thickness will be used, including novel flexural-wave methods, remote sensing and electromagnetic induction techniques. SAMS’ role is to provide data from UK submarines and aid in the development of the novel tiltmeter-based instruments. Data will be used to improve sea ice models and validate the new CRYOSAT satellite sensors. The resulting synoptic thickness monitoring network will be used to investigate the postulated dramatic thinning in the Arctic Ocean sea ice cover as a result of climate change.