United Kingdom: projects/activities

Directory entires that have specified United Kingdom as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 3 of 3
1. Studies of the Polar Cap Ionosphere

The experiments comprise automated receiving systems for 150 and 400 MHz transmissions from NIMS (formerly known as NNSS) satellites that are used to determine the ionospheric electron content by means of the differential carrier phase method. Receivers are located at Ny-Ålesund, Longyearbyen, Bjørnøya and Tromsø. Measurements of electron content from the receiver network are inverted in a tomographic reconstruction algorithm to yield two-dimensional images of electron density over a wide region. The observations are used to investigate the dynamical processes responsible for the spatial structuring of the plasma distribution in the polar ionosphere. These tomographic images are complementary to measurements made using the EISCAT and EISCAT Svalbard radars and auroral optical instruments located on Svalbard.

Atmospheric processes Geophysics Ionosphere tomography Atmosphere
2. Remote sensing of the radiative properties of arctic aerosols at solar and thermal infrared wavelengths and retrieval of aerosol microphysical properties

The current scientific knowledge does not allow estimating accurately the surface radiative forcing caused by tropospheric aerosols and their influence on the evolution of the Earth climate. The radiative forcing depends on the optical properties of the aerosols at solar and thermal infrared wavelengths. These optical properties depend, in turn, on the chemical composition and size of the aerosols. Remote sensing with passive radiation sensors operating in the above-mentioned spectral ranges allows to measure the optical properties of the aerosols and to characterise their temporal variability. These data are needed for regional climate simulations of the Arctic, particularly for delineating the impact of the Arctic haze phenomenon. In this project, a synergetic effort will be made to obtain information about the radiative and microphysical properties of springtime arctic aerosols. Therefore, a polarisation-spectrometer for the solar spectral range, which is currently developed at the Free University of Berlin as a variant of the FUBISS spectrometer, will be operated from the surface in coincidence with the Fourier Transform InfraRed-spectrometer (FTIR) installed at Ny-Aalesund by the AWI. The former instrument measures the intensity and polarisation of the scattered solar radiation from the visible to the near-infrared. The latter measures the radiation emitted by the Atmosphere itself in the thermal infrared window region. Together, they thus provide a wealth of information about the aerosol optical properties at the interesting wavelengths (spectral optical depth, single-scattering albedo, and asymmetry factor of the phase function), which will allow inferring the aerosol microphysical properties. Complementary measurements of the aerosol microphysical properties will be provided by an aerosol volatility analyser, which is maintained by the University of Leeds and will also be brought to Ny-Aalesund. This instrument comprises a fast response scanning volatility system and an optical particle counter. From the thermal response of the aerosol number and the change in the size distribution conclusions can be inferred about the chemical composition and the state of mixing of aerosols as a function of size.

Aerosols Atmospheric processes Arctic haze FTIR Climate variability Climate Climate change Arctic Atmosphere Troposphere
3. Halocarbons in the atmosphere

The objectives are: 1. to monitor in near-real time the levels of a whole suite of halocarbons (both biogenic and anthropogenic) ranging through CFCs, HCFCs, and HFCs using an adsorption/desorption system coupled to a GC/MS system not using liquid cryogens. 2.The system will be installed (April 2000) at the Ny-Alesund, Zeppelin Research Station and will be operated and owned by NILU (Dr. N.SChmidbauer). 3. Comparisons will be made with the data obtained (since Oct. 1994) on similar compounds from the Mace Head (Ireland) station which uses similar instrumentation, and the Jungfraujoch Station (Jan 2000) operated by EMPA (Dr. Stefan Reimann). 4. Data will be compared to the Southern Hemisphere data collected at Cape Grimm, Tasmania by CSIRO (Dr. P. Fraser) 5. Data will be used to model the dispersion of the halocarbons in the high latitudes and possible consequences for radiative forcing.

Atmospheric processes Sources Long-range transport Contaminant transport Climate change Halocarbons Emissions Anthropogenic Arctic Persistent organic pollutants (POPs) Local pollution Atmosphere Biogenic