Directory entires that have specified Sweden as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.
It is also possible to browse and query the full list of projects.
To edit or add records to any of the catalogs, log in or create an account.
The Swedish Meteorological and Hydrological Institute (SMHI) maps ice extent and type for shipping and weather prognoses (Table 6, #4.1). The ice extent at sea is of great importance for navigation, and assistance from an icebreaker is often needed, especially for harbors in the Bothnian Bay. Hence, ice conditions are mapped daily during the winter period, normally from the end of November until the end of May. Ice meteorologists take advantage of detailed reports about ice type and ice thickness from observers along the coast, e.g. pilots, special ice observers, and from the icebreakers passing through the ice-covered sea. Observations from helicopters are part of the regular icebreaking activities. Satellite images, especially from US weather satellites (NOAA-15, NOAA16 and NOAA-17), complement the ice reports and provide information on the large-scale ice situation on the scale 1 km x 1 km during clear sky conditions. More detailed ice information, down to the scale 20 m x 20 m, can be retrieved from a satellite-based instrument called Synthetic Aperture Radar (SAR). SAR sensors are also found onboard the Canadian RADARSAT (in operation since 1996) and on the European ENVISAT (since 2003) and provide information on the ice situation regardless of weather conditions and time of day. A good description of the ice situation is also needed as input data for weather prognosis models because the extent of sea ice has a major influence on weather (especially in coastal areas), and on temperature, cloudiness, and precipitation. Results from daily ice mapping are saved in a database from which e.g. climate statistics for the Baltic region may be generated.
It has become clear in recent years that a changing composition of the atmosphere due to human activities may influence the climate system. The production of greenhouse gases and their accumulation in the atmosphere can result in a global warming and changes in the climate system. On regional scales, this may result in even much more pronounced changes. This is particularly true for the high northern latitudes. Climate changes will impact the society and nature in many ways. The anticipated effects are large and will matter both globally (mainly negative consequences) and regionally (both negative and positive consequences). SWECLIM provides users with detailed regional climate study results. SWECLIM develops regional (limited area) climate system modeling, studies climate processes and feedback special for the Nordic region and creates regional climate (change) scenarios on a time scale of 50-100 years. SWECLIM also performs impact studies on water resources. Climate scenarios are also made available for other impact studies, such as in forestry, done by external groups. Information activities on climate change and the regional consequences are an important component in the program. The regional climate model system is built around a regional atmospheric model, regional ocean models with sea ice for the Baltic Sea and land surface modeling plus hydrology. The model system is forced at the by large-scale results from global climate models. Multi-year to multi-decade length integrations are performed with the regional model targeting a domain roughly centered on the Nordic countries and using horizontal resolutions ranging from 20-80 km.