Directory entires that have specified Poland as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.
It is also possible to browse and query the full list of projects.
To edit or add records to any of the catalogs, log in or create an account.
INTERMAGNET is global network of observatories, monitoring the Earth's magnetic field
The prime objectives of IMAGE are to study auroral electrojets and moving two-dimensional current systems.
The network of observations of SR phenomena consists of 3 points: Hornsund (Svalbard), Belsk (Poland), Nagycenk (Hungary). The data from this network are used for scientific analysis.
Fluvial transport, its dynamics and structure, constitute a good indicator of the condition of the natural environment in various climatic zones. Analysis of fluvial transport components allows for precise determination of the rate and directions of transformations of geosystems of any importance. In the polar zone, very sensitive to global changes, it seems expedient to identify the mechanisms and structure of fluvial transport, particularly in the conditions of the observed glacier retreat, the main alimentation source of proglacial rivers. Studies carried out in the zone revealed difficulties in determination of fluvial transport structure, particularly the actual bedload of gravel-bed rivers based on direct measurements, resulting from: short measurement series, lack of standardization of research methods and measurement equipment, and strategy of selection of study objects and sampling. The research project presented concerns determination of mechanisms of fluvial transport and sediment supply to Arctic gravel-bed river channels. The mechanisms reflect the processes of adaptation of proglacial rivers of the Arctic zone to changing environmental conditions, and indicate the dominant directions of transformations of paraglacial geosystems of various importance. For studies on Arctic geosystems, the region of the south Bellsund (SW Spitsbergen) was selected due to extensive knowledge on its hydro-meteorological and glacial-geomorphological conditions, and long-term measurement series carried out by the research station of the MCSU, among others within the framework of the international monitoring network: SEDIBUD (IAG) and Small-CATCHMENT program. For detailed studies, rivers with various hydrological regimes were selected, functioning at the forefield of the Scott and Renard Glaciers. The Scott River glacial catchment and glacier-free catchments of the Reindeer Stream and the Wydrzyca Stream (with a snow-permafrost hydrological regime) meet the selection criteria for representative test catchments analyzed for the following programs: SEDIFLUX, SEDIBUD, and POP.
Zooplankton make essential links between producers and predators in marine ecosystems, so mediating in the CO2 exchange between atmosphere and ocean They can be indicators of climate variability, and changes in zooplankton species distribution and abundance may have cascading effects on food webs. West Spitsbergen Current is the main pathway of transport of Atlantic waters and biota into the Arctic Ocean and the Arctic shelf seas. West Spitsbergen Shelf coastal and fjordic waters, therefore, are natural experimental areas to study mechanisms by which the Atlantic and Arctic marine ecosystem interact, and to observe environmental changes caused by variability in climate. The main objectives of the zooplankton monitoring are: a) to study patterns and variability in composition and abundance in zooplankton of the West Spitsbergen Current and the West Spitsbergen fjords and coastal waters; b) to find out environmental factors responsible for the observed patterns and variability in zooplankton, and to understand possible relations between zooplankton and their environment on different space and time scales; c) to observe and monitor the variability in zooplankton in relation to local and global climate changes.
Project aims indicate of changes of main terrestrial cryosphere components – glaciers and permafrost. Research on glaciers assumes both to inspect recent changes (mass balance, geometry, thermal structure and widely understood dynamics) and to reconstruct past events (especially in base on subaqual records in the marine-part forefields of the tide-water glaciers). Selected research results are part of the World Glacier Monitoring Service (WGMS). The most widely studied are Waldemar Glacier, Irene Glacier and Elise Glacier. Several research aspects, such as geometry of glaciers are investigated for more than 30 years, since first NCU Polar Expedition in 1975. Permafrost investigations are focused on the depth of the summer active layer thawing and thermal properties of it. Selected results constitutes a part of Circumpolar Active Layer Monitoring (CALM) programme.
monitoring of thermal and humidity parameters of arctic atmospheric boundary layer in horizontal and vertical profile covering glaciated area, non-glaciated area and mountain peak
University of Silesia in close cooperation with the Institute of Geophysics, Polosh Academy of Sciences (PAS) has developed and maintain monitoring of glaciers in SW Spitsbergen, Svalbard. Monitoring network of land ice masses in Southern Spitsbergen is aimed to study the response of tidewater glaciers to climate warming, with focus on mass loss due to calving. Seasonal and interannual changes in glacier flow velocity, fluctuation of terminus position and calving rate are studied for better understanding of ice berg calving. The target glacier Hansbreen has a comprehensive ground observing system (Figure 21). It consists of mass balance stakes, automatic weather stations (AWS), time lapse GPS survey of velocity at stake T4, two time lapse cameras, automatic laser ranger and panoramic radar for measurements of ice cliff fluctuations. Moreover, mass balance, including snow cover studies are conducted every year since 1989. In some years high frequency ground penetrating radar is used for snow thickness measurements along the same profiles on the glacier. Satellite remote sensing is used for extraction of data on glacier flow velocity and fluctuation of termini and calculation of mass loss by calving. Up-to-dated inventory of glaciers in Southern Spitsbergen has been done by remote sensing methods (Figure 23). Studies are conducted in cooperation with Spanish, Norwegian and Italian partners. Cooperation with Institute of Oceanology, PAS (since 2010) is developed to monitor sea water parameters for studies of sea water - ice cliff interaction. Main gaps: Gaps in series of observations due to failures of equipment, lack of power supply or damage by polar bears. Long term tide and wave record required. More tidewater glaciers advisable with monitoring of flow velocity by GPS as ground truth data for calibration of remote sensing survey.
Main objectives of Hans Monitoring Network are collecting long-term record of mass-balance measurements and surface glacier velocities. Additionally we collect meteorological parameter at 3 AWSs located in ablation and accumulation area and ELA.
EMBOS is a continuation of BIOMARE and aims for integrating marine biological – biodiversity observations Long Term Large Scale in set of selected stations across Europe. Poland (IOPAS) is responsible for the Hornsund site and together with Norway (Norsk Polarinstitutt, UNIS, AKVAPLAN) IOPAS is responsible for the Kongsfjorden site. Main gaps: Sediment chemistry
The Arctic region represents a sensitive ecosystem, which is susceptible to even small changes in the local climate. Special conditions of usually high surface albedo and low solar elevations cause enhanced aerosol/cloud effects due to multiple scattering. It is suspected that this increased interaction between solar radiation and the aerosol particles/clouds magnifies their radiative impact. Thus, for a given aerosol distribution, the specific optical properties are enhanced in the polar regions. For the same reasons, results from field experiments at low latitudes are difficult to transfer to polar regions and as a consequence there is an urgent need to conduct specific measurement programs in high latitude regions. In order to improve the knowledge about the origin, transport pathways, vertical structure of aerosol physical and chemical properties as well as the impact on climate in the polar regions, a combined effort of surface-based, airborne and spaceborne measurements is needed. Therefore, this proposed project is aiming at a determination of the vertical structure of the chemical, physical and optical properties of Arctic aerosol particles, including solar radiative closure between observed and calculated aerosol properties (direct climate effect)
Since 1988 the regular summer hydrographic observations in the Nordic Seas and Fram Strait have been collected by the Institute of Oceanology Polish Academy of Sciences (IOPAS). Observational activities were carried out under several national programs, in the frames of EU projects VEINS, ASOF-N and DAMOCLES and within Polish-Norwegian cooperation in the AWAKE project. The main objectives are: to study the long-term variability of water mass distribution, their physical and chemical properties and different pathways in the Nordic Seas; to investigate the Atlantic water (AW) circulation in the Nordic Seas and its inflow into the Arctic Ocean; to recognize the possible feedbacks between the Atlantic water variability and local and global climate changes.
Since 2000 the regular summer hydSince 2000 the regular summer hydrographic observations in the Western Spitsbergen Fjords have been collected by the Institute of Oceanology Polish Academy of Sciences (IOPAS). Observational activities were carried out under several national programs, and in the frames Polish-Norwegian research Fund projects ALKEKONGE and AWAKE. The main objectives are: to study the variability of water mass physical and chemical properties in the Western Spitsbergen Fiords; to investigate the Atlantic water (AW) inflow into the fjords; to recognize the possible feedbacks between the Atlantic water variability, local climate and glaciers discharge.rographic observations in the Western Spitsbergen Fjords have been collected by the Institute of Oceanology Polish Academy of Sciences (IOPAS). Observational activities were carried out under several national programs, and in the frames Polish-Norwegian research Fund projects ALKEKONGE and AWAKE.
Recently observed changes in glacierized areas significantly influences on water circulation features in those regions. Project assumes hydrological research in Waldemar River catchment as the example of the High-Arctic glacierized basin. Those investigations began in late 1970’s. From that date substantial changes in catchment characteristic are observed (e.g. decrease degree of glaciation). Glacier-fed river characteristics are well recognized all over the globe. But still there is a need to define how contemporary deglaciation processes affects the water circulation cycle. Basics hydrological features in Waldemar River Catchment are continuously investigated since 1995. In the close feature, a HIWRC programme will be expanded to include research of major glaciohydrological processes in catchment (e.g. internal glacial drainage and it contribution to total outflow). Study assume measurements in a few river points – both in close vicinity of glacier (with no other than glacial water source tributaries) and in lowest part of catchment (with periglacial tributaries).
Arctic coast is extremely sensitive and important area of interaction between land and sea. The diagnosis of the mechanisms governing the polar zone is of fundamental importance for tracing the evolution of the coast caused by climate change. Diagnosis of morphogenesis and morphodynamics of the polar coast becomes important in recent years, a research priority, not only from the scientific point of view, but also practical. Therefore, the key aims of the project include: - determining the dynamics of morphogenetic processes with particular emphasis on marine processes within the coastal zone in the context of climate change after the Little Ice Age (LIA) and the development of model of the coast functioning during this period. - to try to reference this model to the development of the coast at the turn of Vistulian and Holocene (14-8 ka) by defining the stages of shaping the shoreline including glaciizostatic and eustatic and elements of tectonical and lithological features of the coastal zone.
The Polar Station of the University of Nicolaus Copernicus is located in the western part of the Oscar II Land, in the northern part of the coastal Kaffiøyra Lowland which is closed by the Forlandsundet from the west. The undertaken research included almost all components of the geographical environment. Scientific programs put pressure on research in glaciology, glacial geomorphology, permafrost and periglacial processes, as well as climatologic and botanical studies. Since 1995 glaciological research and the studies of permafrost of various ground types and their seasonal thawing, as well as meteorological observations have been the major issues on the research agenda. Glaciers pose the dominating feature of the Kaffiøyra region. Since the 19th century their area has decreased by about 30%. Thus, one of the main scientific issues studied there is the course and the reasons for the change in the glaciers’ range. This can be achieved by studying mass balance of the glaciers. Presently, mass balance of four glaciers is studied: the Waldemarbreen, the Irenebreen, the Elisebreen and the Aavatsmarkbreen. 39 The research includes both the summer balance (ablation and outflow from the glaciers) and the winter snow accumulation. The detailed research plans also refer to two large glaciers which end up in the sea. Those are the Aavatsmarkbreen in the north and the Dahlbreen in the south of the Kaffiøyra. Currently, subaquatic glacial relief of the bays in the Forlandsundet region is under scrupulous investigation. The results of the research can be obtained from the station’s website (www.stacja.arktyka.com), from the publications by the World Glaciological Monitoring Service (WGMS- IAHS), as well as the website of the Circumpolar Active Layer Monitoring (CALM- IPA). The research carried out in the N.Copernicus University Polar Station has enabled numerous scientists of most specialties of the Earth sciences (glaciology, climatology, hydrology, geomorphology, pedology and botany) to collect material for numerous papers, including master and doctoral theses. Scientific attractiveness of the Kaffiøyra’s geoecosystem has been appreciated by scientists from various scientific centres in Poland and elsewhere, who take part in interdisciplinary expeditions organized every year. The most Polish polar research in the north-west Spitsbergen is based on the N.Copernicus University Polar Station Once the station has had an extension addend, it can host 10-15 people at any one time. The new section of the station is 32 sq. m downstairs and 24 sq. m upstairs. This includes a study, a workshop, a bedroom as well as two bedroom entresols. The extension is connected with the old section of the station, which includes a living room and a bedroom, but there is also a separate entrance to the new part of the station. Additionally, the station gained extra storage floor, a laboratory, a bathroom, as well as a garage to keep boats, snowmobiles and engines. All together the station now has about 100 sq. m. The station is used 3 to 4 months annually, but it is possible to stay there for as long as a whole year. It is equipped with necessary technical facilities, motor-generators, solar panels, motorboats and snowmobiles. More important measurement equipment includes: a weather station with the basic measuring instruments (the measurements conducted since 1975); automatic weather stations (with the measurements taken at any intervals); limnigraphs and loggers installed in the selected watercourses (measurements of water levels, flow rates and the selected physicochemical features of water since 1975); a system of ablation poles installed on the glaciers; ice drills; loggers for measuring ground temperatures and ice temperatures, and others. The extension of the station in 2007 enabled larger groups of scientists to work and conduct research. The fact that both the living and laboratory space has been enlarged is especially important, as the station is often visited by scientists from all over the world. As a result, the extension will make it possible to intensify current international contacts, as well as start new co-operation projects in the Kaffiøyra region.
The study includes comprehensive study of the geographical environment in the area of Polar Station of Maria Curie-Skłodowska University in Calypsobyen (NW part of Wedel Jarlsberg Land, Svalbard). Currently, studies have been carried out within research projects: - Dynamics of matter circulation in the polar catchment are a subject to deglaciation processes (Scottelva, Spitsbergen) (DYNACAT) - Morphogenetic and morphodynamics conditions of development of the coast of the NW part of Wedel Jarlsberg Land (Spitsbergen) in the late Vistulian and Holocene (MORCOAST) - Mechanisms of fluvial transport and sediment supply to Arctic river channels with various hydrological regimes (SW Spitsbergen) (ARCTFLUX)
The project aims at analysing dynamics of matter circulation in the polar catchment under the deglaciation processes and its effect on topoclimatic and microclimatic diversification of the area in question. Equally important are: 1) the dynamics of periglacial and 2) hydrological processes and changes in the local environment as an indicator of global climatic changes. The proposed project shall take into account the following: - general weather and climatic conditions and topoclimatic and microclimatic differentiation of selected sites; - albedo and solar radiation and their influence on the course of the processes; - changes in the circulation of water in space and time (precipitation-evaporation-outflow) as an effect of local and global processes; - analysis of processes that determine the amount of water entering the hydrological cycle including global climatic changes and characteristics of summer ablation in terms of meteorological conditions; - analysis of the factors which determine the occurrence and circulation of waters in the permafrost active layer and assessment of static and dynamic water resources in the active layer in meteorological and hydrogeological aspects; determination and quantitative analysis of the genetic structure of fluvial outflow; - water balance of selected catchments (glacial and periglacial ones) with diverse outflow alimentation sources.
To collect hydrological and biochemical data in Horsund, Spitsbergen in the area of Revdalen Valley. Main gaps: Summer season data only, with gaps due to observer and equipment availability.
Polish Seismological Network is to record and investigate on seismic events recorded by permanent Polish seismic stations. The seismic station at Hornsund is a Polish station despite its location outside Poland’s territory Network type: Geophysical observations