Norway: projects/activities

Directory entires that have specified Norway as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 9 of 9
1. Monitoring of long range transboundary air pollution, greenhouse gases, ozone layer and natural ultraviolet radiation

The main objective is to quantify the levels of air pollution in the artctic, and to document any changes in the exposures. It includes the necessary components to address impacts on ecosystems, human health, materials and climate change. 

AMAP Arctic air Arctic haze Atmosphere Atmospheric chemistry monitoring Atmospheric processes Carbon dioxide chlorofluorocarbons (CFC) Climate heavy metals methane Montreal & Kyoto Protocols PAHs PCBs POPs total gaseous mercury total ozone UV
2. Long-term effects of offshore discharges on cold water zooplankton: establishing a test system for chronic exposure to offshore discharges

During the last decade the concern regarding environmental effects of the offshore industry has shifted from effects of drilling discharges on benthic communities, towards a stronger focus on the water column and effects on the pelagic ecosystem. At the same time, oil and gas development is expanding in the Norwegian and Russian sectors of the Barents Sea. In this regard, a project has been initiated to look at responses of especially Calanus spp. and other copepod species to long-term, sublethal exposure to selected offshore discharges and discharge components, as well as accidental oil spills. Calanus spp. is ecologically the most important zooplankton species along the Norwegian shelf and in the Barents Sea. A laboratory based facility for culture through several generations is being developed through this project. In addition, the impact of oil compounds on the cold-water and arctic Calanus species-complex will be examined by carrying out a series of laboratory (some at Ny Ålesund) and ship based experiments. The response parameters will include both behavioral (feeding, mate finding, avoidance) and physiological (mortality, egg production, development rates, oxygen consumption and assimilation efficiency) parameters. The ultimate outcome of this research is expected to be a supporting instrument for ecological risk assessment of offshore discharges, which is highly relevant both to the North Sea, the mid-Norway shelf and the Barents Sea.

Pathways Biological effects Biology PAHs Pollution sources Environmental management Contaminant transport Petroleum hydrocarbons Exposure Arctic Oil and Gas
3. Environmental effects of offshore oil activities: experimental tests of petroleum-associated components on benthos at community, individual, and cellular levels

This project will examine benthic processes in arctic and mid-latitude regions in order to derive specific conclusions on the sensitivity of benthic organisms and communities to acute spills of petroleum-related chemicals and routine releases of drill cuttings. We will carry out a series of controlled experiments on whole sediment communities and individual benthic organisms with additions of drill cuttings and petroleum-associated contaminants, arriving at a set of hypotheses on the likely impacts on the benthos of petroleum production activities at higher latitudes. A series of testable hypotheses will be formulated based on an examination of real-world monitoring data sets collected under Norway’s Petroleum Regional Monitoring Programme and results of mesocosm experiments performed previously at the Norwegian Institute for Water Research (NIVA) Station at Solbergstrand. These data sets will be examined in order to identify the geographic scope of responses to petroleum industrial activities. Through this work, we intend to propose procedures to improve the interpretation of benthic monitoring data for diverse environmental regions in Norway. The project is linked to several on-going NFR projects within the Polarklima programme. By involving a Ph.D. student the project will advance the education and training of young scientists in the field of biological effects studies related to petroleum development and exploration activities.

Biological effects PAHs Petroleum hydrocarbons Arctic Sediments Oil and Gas
4. Contaminants in marine sediments, Svalbard 1997

Surface samples collected around Svalbard in 1997 have been analysed for total content of heavy metals, Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs) and a selection of pesticides. Sample localities have been selected to include areas not covered by previous investigations. Based on the data set and results from previous expeditions in the area, contamination levels as well as potential sources for the pollutants are discussed. The PAH levels for most stations are moderately elevated with a high contribution of aromatic hydrocarbons associated with petrogenic sources. Hence the dominant sources for the PAHs is most likely derived from petroleum seepage and or coal mining. Long-range transport of aromatics associated with anthropogenic input is a minor component of the observed PAH levels. The highest concentration of PAH is found in Storfjorden with a value higher than the elevated concentrations earlier reported from the south-eastern Storfjorden and over the Central Bank. The concentration levels of the metals arsenic, lead, chromium and nickel were moderately elevated. Because of sparse information on the natural geomorphology, background metal concentrations are not known for this area. Hence, no quantitative comparison of natural and anthropogenic inputs for metals can be made. However, the most dominant source is assumed to be natural and related to the geological conditions in the area. All PCB levels were low, suggesting a dominant influence of long-range transport of these compounds to the area. Pesticide data showed low contamination of all compounds and suggests a predominant long-range atmospheric source for these pollutants.

Pathways Sources Organochlorines PCBs Mapping Heavy metals PAHs Long-range transport Pollution sources Contaminant transport Petroleum hydrocarbons Persistent organic pollutants (POPs) Local pollution Sediments Pesticides Oil and Gas
5. Contaminants in marine sediments and organisms from harbour areas in Harstad, Tromsø, Hammerfest and Honningsvåg, northern Norway 1997 - 98.

Levels of selected contaminants have been determined in sediment, blue mussel, seeweed and fish from harbour areas in Harstad, Tromsø, Hammerfest and Honningsvåg in northern Norway. The following contaminants were included in the study: PAH, PCB, 5CB, HCB, OCS, HCH, DDT, DDE, DDD, TBT, Cd, Cu, Hg, Pb, Zn and Li. A few samples were also analysed for dioxines (PCDD and PCDF), non-ortho PCBs and PCN. The results were compared with the Norwegian State Pollution Control Authorities classification system for marine sediments (Molvær et al. 1997). Elevated (and in most cases very high) levels of most of the measured contaminants were found in all the investigated harbour areas.

Organochlorines PCBs Heavy metals Fish PAHs Petroleum hydrocarbons Persistent organic pollutants (POPs) Local pollution Dioxins/furans Sediments Pesticides Human intake
6. Transfer of organic pollutants from the abiotic environment to the lowest tropic levels of the ice associated food chain

The aim of the project is to detrmine the content of organic contaminants in sea ice (including dirty ice), sea water (particulate and dissolved), snow, ice algae and phytoplankton collected in the marginal ice zone of the Barents Sea and in Fram Strait, and to calculate bioconcentration factors from the abiotic compartments to the lowest trophic levels of the food chain. Silicate measurements were included in the Fram Strait as water mass tracer. The Barents Sea represents an area influence mainly by first year ice with sea ice formed in the area and or in the Kara Sea, and and strongly influenced by the inflowing two branches of water of Atlantic origin. Samples were collected on a transect along the ice edge and at two transects into the ice. The stations across the Fram Strait were taken in regions affected by water masses and sea ice from differents regions and age. In the western sector, the upper water column was influenced by the inflowing west Spitsbergen current of Atlantic origin and mainly with first-second year ice, while the easter station was influenced by outflowing water from the Arctic Ocean and multiyear sea ice of more eastern origin.

Pathways Organochlorines PCBs PAHs Long-range transport Pollution sources Sea ice Contaminant transport Exposure Arctic Persistent organic pollutants (POPs) Local pollution Ice cores Food webs Pesticides Ecosystems
7. Environmental assessment of the Isfjorden complex, Svalbard

The project aims to carry out an environmental assessment of the marine environment close to the three main settlements in the Isfjorden complex; Barentsburg, Longyearbyen and Pyramiden. The study comprises analyses of sediment geochemistry and soft-bottom benthic fauna. Attention is given to distinguishing atmospheric transport of contaminants from those arising from local sources.

Biological effects Sources Pollution sources Contaminant transport Mining Primary recipient Radionuclides Modelling Dioxins/furans Sediments Pesticides Waste secondary recipient Biology Organochlorines PCBs Mapping Heavy metals PAHs Long-range transport Discharges Spatial trends Environmental management Petroleum hydrocarbons Biodiversity Arctic Persistent organic pollutants (POPs) Local pollution Data management Temporal trends Ecosystems
8. Effects of metals and POPs on marine fish species

To clarify whether metals and/or POPs affect marine fish species - Atlantic cod (Gadus morhua) and plaice (Pleuronectes platessa)

Biological effects PAH-metabolites Organochlorines Pleuronectes platessa Heavy metals Fish EROD PAHs Long-range transport Gadus morhua ALA-D metallothionein
9. The P450 enzyme system of the Arctic charr as a biomarker of POP contamination in Arctic aquatic environments

Validate the hepatic P450 enzyme system as a biomarker of levels and effects of POPs in Arctic, aquatic environments, using the anadromous (sea-migratory) Arctic charr as an indicator species.

Biological effects Biomarker Organochlorines PCBs Fish PAHs Environmental management Petroleum hydrocarbons Exposure Persistent organic pollutants (POPs) Oil and Gas