Norway: projects/activities

Directory entires that have specified Norway as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 18 of 18
1. Collaboration Network on EuroArctic Environmental Radiation Protection and Research (CEEPRA)

The aim of the CEEPRA (Collaboration Network on EuroArctic Environmental Radiation Protection and Research) project is establishment of a cooperation network in the EuroArctic region, cross-border exchange of knowledge and skills, improvement of emergency preparedness capabilities and risk assessments in case of nuclear accidents in the region as well as raising awareness and knowledge in the general public and stakeholders with respect to the nature, common challenges and associated risks in the area of nuclear safety, emergency preparedness and radioactivity in the environment. The project will study the current state of radioactive contamination in terrestrial and marine ecosystems in the EuroArctic region by examining environmental samples collected from the Finnish Lapland, Finnmark and Troms in Norway, the Kola Peninsula and the Barents Sea. The results will provide updated information on the present levels, occurrence and fate of radioactive substances in the Arctic environments and food chains. Special attention will be given to collection and analyses of natural products widely used by population in Finland, Russia and Norway, such as berries, mushrooms, fish and reindeer meat. The region-specific risk assessments will be carried out through modelling and investigation of long-term effects of potential nuclear accidents in the EuroArctic region and possible impacts on the region’s indigenous population, terrestrial and marine environments, reindeer husbandry, the natural product sector, tourism and industries. Open seminars for general public and target groups will be arranged in Finland, Russia and Norway during the project implementation period to provide relevant information on radioactivity-related issues and the status in the region.

Environmental safety terrestrial ecosystem Radioactivity Contaminant transport hypothetical assessments Radionuclides levels public awareness marine ecosystem fate of radionuclides in food chains modeling
2. Contaminants in Polar Regions – Dynamic Range of Contaminants in Polar Marine Ecosystems (COPOL)

The IPY-project ‘COPOL’ has a main objective of understanding the dynamic range of man-made contaminants in marine ecosystems of polar regions, in order to better predict how possible future climate change will be reflected in levels and effects at higher trophic levels. This aim will be addressed by 4 integrated work packages covering the scopes of 1) food web contaminant exposure and flux, 2) transfer to higher trophic levels and potential effects, 3) chemical analyses and screening, 4) synthesis and integration. To study the relations between climate and environmental contaminants within a project period of four years, a “location-substitutes-time”-approach will be employed. The sampling is focussed towards specific areas in the Arctic, representing different climatic conditions. Two areas that are influenced differently by different water masses are chosen; the Kongsfjord on the West-coast of Spitzbergen (79N, 12 E) and the Rijpfjord North-East of Svalbard (80N, 22 E). The main effort is concentrated in the Kongsfjord. This fjord has been identified as particularly suitable as a study site of contaminants processes, due to the remoteness of sources, and for influences of climatic changes, due to the documented relation between Atlantic water influx and the climatic index North Atlantic Oscillation (NAO). The water masses of the Rijpfjord have Arctic origin and serves as a strictly Arctic reference. Variable Atlantic water influx will not only influence abiotic contaminant exposure, but also food web structure, food quality and energy pathways, as different water masses carry different phyto- and zooplankton assemblages. This may affect the flux of contaminants through the food web to high trophic level predators such as seabirds and seals, due to altered food quality and energy pathways.

Biological effects Organochlorines Heavy metals Fish Climate variability Long-range transport Climate Contaminant transport Climate change Exposure Arctic Persistent organic pollutants (POPs) Local pollution Seabirds Food webs Ecosystems
3. Marine food webs as vector of human patogens

Marine foodwebs as vector and possibly source of viruses and bacteria patogenic to humans shall be investigated in a compartive north-south study. Effects of sewage from ships traffic and urban settlements, on animals of arctic foodwebs will be studied.

Pathways Biological effects Hydrography Fish Discharges Pollution sources Environmental management Contaminant transport Terrestrial mammals Shipping Polar bear Exposure Arctic Local pollution Seabirds Shellfish Food webs Waste Human health Human intake Marine mammals
4. Long-term effects of offshore discharges on cold water zooplankton: establishing a test system for chronic exposure to offshore discharges

During the last decade the concern regarding environmental effects of the offshore industry has shifted from effects of drilling discharges on benthic communities, towards a stronger focus on the water column and effects on the pelagic ecosystem. At the same time, oil and gas development is expanding in the Norwegian and Russian sectors of the Barents Sea. In this regard, a project has been initiated to look at responses of especially Calanus spp. and other copepod species to long-term, sublethal exposure to selected offshore discharges and discharge components, as well as accidental oil spills. Calanus spp. is ecologically the most important zooplankton species along the Norwegian shelf and in the Barents Sea. A laboratory based facility for culture through several generations is being developed through this project. In addition, the impact of oil compounds on the cold-water and arctic Calanus species-complex will be examined by carrying out a series of laboratory (some at Ny Ålesund) and ship based experiments. The response parameters will include both behavioral (feeding, mate finding, avoidance) and physiological (mortality, egg production, development rates, oxygen consumption and assimilation efficiency) parameters. The ultimate outcome of this research is expected to be a supporting instrument for ecological risk assessment of offshore discharges, which is highly relevant both to the North Sea, the mid-Norway shelf and the Barents Sea.

Pathways Biological effects Biology PAHs Pollution sources Environmental management Contaminant transport Petroleum hydrocarbons Exposure Arctic Oil and Gas
5. Study of the ice phase in Arctic mixed-phase clouds and its influence on the cloud-radiation interaction (EPOPEE) within the international atmospheric research project ASTAR (Arctic Study of Tropospheric Aerosol and Radiation)

The project EPOPEE is embedded in the international project ASTAR to study direct and indirect climate effects of aerosols and clouds in the Arctic. The particular goals of the project EPOPEE are to experimentally characterize the ice phase in Arctic clouds (including the ice phase) in situ, to study the aerosol-cloud as well as cloud-radiation interactions, and to develop adequate methods to validate remote sensing cloud parameters. In 2004 the project EPOPEE is mainly organized around in situ observations of detailed microphysical and optical cloud properties onboard the Polar-2 aircraft during the transition from polluted Arctic haze (observed especially in late winter, early spring months) to clean summer aerosol conditions. The transition from Arctic haze to clean summer conditions is quite sharp (a large amount of aerosols coming from Eurasian industrial areas accumulate over the Arctic and cover the Arctic by a layer of a smog-like haze of the size of the continent of Africa) due to a radical change in atmospheric transport patterns and is, thus, easy to identify. During Arctic summer, the high latitudes are then more or less “protected” from long-range transport of air masses from lower latitudes. The principal scientific objective of the project EPOPEE in 2004 will focus on studying the aerosol-cloud interactions with particular attention given to the ice phase nucleation in Arctic mixed-phase clouds. The interpretation of the instrumental observations will broadly benefit from a very close cooperation with the LaMP modelling group for theoretically coupling small-scale processes (cloud particle nucleation) with meso-scale dynamics. Furthermore, the project will focus on cloud-radiation interaction and the development of adequate methods to validate cloud parameters retrieved from remote sensing techniques. Therein, we will experimentally answer the question of how the different ice crystal shapes govern the scattering phase function of respective crystals. Moreover, the in situ cloud measurements will allow to develop an adequate strategy for the interpretation of remote sensing data from a depolarisation Lidar onboard the same aircraft (Polar-2).

Atmospheric processes Arctic haze Long-range transport Climate Contaminant transport Climate change Modelling Arctic Atmosphere Ecosystems
6. RADNOR - Radioactive dose assessment improvements for the Nordic marine environment: Transport and environmental impact of technetium 99 (99Tc) in marine ecosystems

Radioactivity in the Arctic environment is a central topic within environmental pollution issues. Increased discharges of technetium-99 (99Tc) from the nuclear fuel reprocessing plant Sellafield to the Irish Sea has caused public concerns in Norway. This project (acronym “RADNOR”) includes model and monitoring assessments and improvements, assessment of current and novel abiotic and biotic dose parameters and dose calculations and use of realistic climatic background scenarios in order to assess corresponding consequences for transport of radioactive pollutants. RADNOR consists of three main components: part 1, the determination of levels and time series of 99Tc in benthic and pelagic food webs; part 2, containing working packages on improvements to the understanding of site-specific and time-dependent sediment-water interactions (KD), kinetics of accumulation (CF) and body distribution in marine organisms, including contaminated products for the alginate industry and part 3, dealing with model hindcasts and observations for spreading of 99Tc from the Sellafield nuclear reprocessing plant during the 1990s and improvement of the NRPA dose assessment box model. From the model outputs, doses to man and environment will be calculated resulting in a valuable database for use within environmental management and for decision makers.

distribution coefficients (KD) RADNOR Long-range transport Spatial trends Contaminant transport concentration factors (CF) Radionuclides Modelling Oceanography Arctic Food webs Sediments Temporal trends Human intake Technetium 99
7. Transport, burial and fluxes of carbon and contaminants in Arctic lake and fjordic sediments

To distinguish between atmospheric and marine transport of contaminants to northen latitudes by comparison inventories of lake and fjordic sediments.

Contaminant transport Sediments Atmosphere
8. Monitoring POPs and heavy metals in the merlin (Falco columbarius)

To monitor levels of pollutants in merlin by analysis of POPs and heavy metals in eggs and feathers. /Feathers and addled eggs of merlin were collected in 1992, 1993, 1994, 1999 and 2000 for chemical analysis of POPs and heavy metals. Comparisons with eggs from museum collections show that there has been a significant shell thinning in eggs of Norwegian merlins. From 1947 up to 1990 the eggs were on average ca. 15% thinner than normal and after 1990 the thinning has been ca. 10%. There are still high concentrations of DDE to reduce reproductive output in some cases. The PCB levels are low compared to the DDE levels and the concentrations of other chlorinated hydrocarbons are also low. Results from mercury analyses indicate possible effects on breeding performance in some adults.

Biological effects Organochlorines PCBs Heavy metals Long-range transport Spatial trends Contaminant transport merlin Persistent organic pollutants (POPs) Food webs Pesticides Temporal trends terrestrial birds
9. Heavy metals in Grouse species

Study changes in liver concentrations of Cd, Pb, Hg, Cu and Zn in Lagopus lagopus and Tetrao tetrix between the time periods 1990/91 and 2000/01

Heavy metals Long-range transport Pollution sources Contaminant transport Terrestrial mammals Emissions Exposure Temporal trends
10. Persistent organic pollutants in marine organisms in the marginal ice zone near Svalbard: Bioconcentration and biomagnification

Due to the high organochlorine concentrations reported in Arctic top predators, and the potential transport of contaminants with the drifting sea-ice in the Arctic, organisms constituting lower trophic levels living in association with sea-ice have been proposed as susceptible of uptake of high loads of organic pollutants. The present project studies the organochlorine occurrence in organisms living in the marginal ice zone north of Svalbard and in the Fram Strait. This includes both ice fauna (ice-amphipods), zooplankton, polar cod and different seabird species foraging in the marginal ice zone. Our objectives are to investigate: *The bioaccumulation of organochlorines in ice-associated amphipods in relation to diet preference, spatial variation due to sea ice drift route, size, sampling year, uptake and distribution within the body. *Comparison of organochlorine contamination in pelagic and ice-associated organisms at the similar trophic position, to investigate the effect of sea ice as a transporter and concentrator of pollutants. *Spatial variation in zooplankton species, related to differences in water masses and exposure to first year or multi year sea ice. *The contamination load in different seabirds feeding in the marginal ice zone, in relation to diet choice and estimated trophic position, taxonomically closeness and the induction of hepatic CYP P450 enzymes.

habitats Biology sea ice drift route Organochlorines PCBs Fish Long-range transport Spatial trends Sea ice Contaminant transport Ice trophic positions Arctic Persistent organic pollutants (POPs) Seabirds Food webs metabolism Pesticides ice-associated organisms Diet zooplankton
11. Simulation Scenarios for Potential Radioactive Spreading in the 21st century from Rivers and External sources in the Russian Arctic Coastal Zone (RADARC)

1) To perform simulation scenarios for the 21st century, including global warming scenarios, of potential radioactive spreading from sources in the Russian Arctic coastal zone and its impact on Barents, Greenland and Norwegian Seas and the Arctic Ocean; 2) To update the environmental and pollution data base of the Arctic Monitoring and Assessment Program (AMAP); 3) To assess, select and define the most probable simulation scenarios for accidental releases of radionuclides; 4) To implement a Generic Model System (GMS) consisting of several nested models designed to simulate radionuclides transport through rivers, in the Kara sea and in the Arctic ocean / North Atlantic; 5) To carry out simulation studies for the selected "release" scenarios of radionuclides, using various atmospheric forcing scenarios; 6) Assess the impact on potential radioactive spreading from sources as input to risk management.

Shelf seas Pathways Sources Hydrography Catchment studies Radioactivity Long-range transport Pollution sources Sea ice Contaminant transport Radionuclides Modelling Ice Oceanography River ice Arctic Local pollution GIS Sediments
12. Study of influence of land-based sources of radionuclides on radioactive contamination of Kara sea through Ob- and Yenisey river systems

To assess potential levels of radionuclides input into the Kara sea from existing and potential sources of technogenic radioactivity, located on the land in the Ob- and Yenisey rivers watersheds. Specific Objectives * To reveal and estimate a) most hazardous technogenic sources of radioactive contamination in the Ob- and Yenisey watersheds and b) the most possible and dangerous natural and technogenic (antrophogenic) situations (in the regions of these sources) that may result in release of radionuclides into the environment and may lead to significant changes in the radioactive contamination of the Kara sea * To estimate parameters of radionuclides (potential amount, composition, types etc.) under release to the environment from chosen sources as a result of accidents as well as during migration from the sources to the Kara sea through river systems * To set up a dedicated Database and a Geographic Information System (GIS) for modelling transport of radionuclides from the land-based sources to the Kara sea * To develop and create a dedicated model tool for simulation of radionuclides transport from land-based sources through Ob- and Yenisey river systems to the Kara sea

Pathways Hydrography Catchment studies Radioactivity Long-range transport Pollution sources Sea ice Contaminant transport Radionuclides Modelling Ice Oceanography River ice Arctic Local pollution GIS Data management Ocean currents
13. Contaminants in marine sediments, Svalbard 1997

Surface samples collected around Svalbard in 1997 have been analysed for total content of heavy metals, Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs) and a selection of pesticides. Sample localities have been selected to include areas not covered by previous investigations. Based on the data set and results from previous expeditions in the area, contamination levels as well as potential sources for the pollutants are discussed. The PAH levels for most stations are moderately elevated with a high contribution of aromatic hydrocarbons associated with petrogenic sources. Hence the dominant sources for the PAHs is most likely derived from petroleum seepage and or coal mining. Long-range transport of aromatics associated with anthropogenic input is a minor component of the observed PAH levels. The highest concentration of PAH is found in Storfjorden with a value higher than the elevated concentrations earlier reported from the south-eastern Storfjorden and over the Central Bank. The concentration levels of the metals arsenic, lead, chromium and nickel were moderately elevated. Because of sparse information on the natural geomorphology, background metal concentrations are not known for this area. Hence, no quantitative comparison of natural and anthropogenic inputs for metals can be made. However, the most dominant source is assumed to be natural and related to the geological conditions in the area. All PCB levels were low, suggesting a dominant influence of long-range transport of these compounds to the area. Pesticide data showed low contamination of all compounds and suggests a predominant long-range atmospheric source for these pollutants.

Pathways Sources Organochlorines PCBs Mapping Heavy metals PAHs Long-range transport Pollution sources Contaminant transport Petroleum hydrocarbons Persistent organic pollutants (POPs) Local pollution Sediments Pesticides Oil and Gas
14. Ellasjøen, Bear Island - A mass balance study of a highly contaminated Arctic area

In 1994, analyses of sediments and fish from Lake Ellasjøen on Bear Island revealed a surprising scenario. The analytical results indicated some of the highest values of the contaminants PCB and DDT in freshwater sediments and fish ever found in the Arctic. The 1994 results were based on limited amounts of samples. During 1996 and 1997 there were carried out new sampling and analyses of several samples. These results verify the results found in 1994. Since the POP-patterns found deviate considerably from the typical patterns expected for local contamination, no local source can be assumed to be responsible for the high POP values found. Thus, the questions that need to be addressed include the source of these contaminants, the transport pathways that deliver these contaminants to this site, total deposition and finally contaminant fate including biological uptake and effects. Previous investigations from the early 80’s on high volume air samples carried out at Bear Island revealed several long-range transport episodes from Eastern Europe. The overall objective of this project is to contribute significant new information to the understanding of contaminant pathways in the Arctic hydrosphere and to provide a better understanding of contaminant focusing in a sensitive polar environment. This will be accomplished through the development of a comprehensive mass balance study of the atmospheric loadings of PCBs and other contaminants to the Lake Ellasjøen watershed to determine the seasonal importance of atmospheric deposition on a remote polar island. Further, effort will be directed at assessing the relative importance of various source regions of contaminants to the island through an evaluation of contaminant signatures and back trajectories of pollution events.

Pathways Organochlorines PCBs Long-range transport Pollution sources Contaminant transport Modelling Arctic Persistent organic pollutants (POPs) Pesticides Atmosphere
15. Transfer of organic pollutants from the abiotic environment to the lowest tropic levels of the ice associated food chain

The aim of the project is to detrmine the content of organic contaminants in sea ice (including dirty ice), sea water (particulate and dissolved), snow, ice algae and phytoplankton collected in the marginal ice zone of the Barents Sea and in Fram Strait, and to calculate bioconcentration factors from the abiotic compartments to the lowest trophic levels of the food chain. Silicate measurements were included in the Fram Strait as water mass tracer. The Barents Sea represents an area influence mainly by first year ice with sea ice formed in the area and or in the Kara Sea, and and strongly influenced by the inflowing two branches of water of Atlantic origin. Samples were collected on a transect along the ice edge and at two transects into the ice. The stations across the Fram Strait were taken in regions affected by water masses and sea ice from differents regions and age. In the western sector, the upper water column was influenced by the inflowing west Spitsbergen current of Atlantic origin and mainly with first-second year ice, while the easter station was influenced by outflowing water from the Arctic Ocean and multiyear sea ice of more eastern origin.

Pathways Organochlorines PCBs PAHs Long-range transport Pollution sources Sea ice Contaminant transport Exposure Arctic Persistent organic pollutants (POPs) Local pollution Ice cores Food webs Pesticides Ecosystems
16. Radioecological Investigation of Kola Fjord

To investigate the impacts of Russia's military and civilian nuclear activities in the Kola Bay and adjacent areas of the northwest Arctic coast of Russia.

Sources Organochlorines PCBs Heavy metals Fish Radioactivity Discharges Spatial trends Pollution sources Contaminant transport Radionuclides Modelling Exposure Arctic Persistent organic pollutants (POPs) Local pollution Geochemistry Food webs Sediments Pesticides Ecosystems
17. Environmental assessment of the Isfjorden complex, Svalbard

The project aims to carry out an environmental assessment of the marine environment close to the three main settlements in the Isfjorden complex; Barentsburg, Longyearbyen and Pyramiden. The study comprises analyses of sediment geochemistry and soft-bottom benthic fauna. Attention is given to distinguishing atmospheric transport of contaminants from those arising from local sources.

Biological effects Sources Pollution sources Contaminant transport Mining Primary recipient Radionuclides Modelling Dioxins/furans Sediments Pesticides Waste secondary recipient Biology Organochlorines PCBs Mapping Heavy metals PAHs Long-range transport Discharges Spatial trends Environmental management Petroleum hydrocarbons Biodiversity Arctic Persistent organic pollutants (POPs) Local pollution Data management Temporal trends Ecosystems
18. Trajectories of Marine Ecosystem Response to Arctic Climate Change: A Barents-Bering Sea Comparison

Multi-institutional, international cooperative project to determine the possible responses of Arctic marine communities to future global climate change by comparing retrospective patterns in benthic composition and distributions to past climatic events in the Barents and Bering Seas.

Biological effects Climate variability Spatial trends Contaminant transport Climate change Biodiversity Food webs Temporal trends Ecosystems