Directory entires that have specified Norway as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.
It is also possible to browse and query the full list of projects.
To edit or add records to any of the catalogs, log in or create an account.
The IPY-project ‘COPOL’ has a main objective of understanding the dynamic range of man-made contaminants in marine ecosystems of polar regions, in order to better predict how possible future climate change will be reflected in levels and effects at higher trophic levels. This aim will be addressed by 4 integrated work packages covering the scopes of 1) food web contaminant exposure and flux, 2) transfer to higher trophic levels and potential effects, 3) chemical analyses and screening, 4) synthesis and integration. To study the relations between climate and environmental contaminants within a project period of four years, a “location-substitutes-time”-approach will be employed. The sampling is focussed towards specific areas in the Arctic, representing different climatic conditions. Two areas that are influenced differently by different water masses are chosen; the Kongsfjord on the West-coast of Spitzbergen (79N, 12 E) and the Rijpfjord North-East of Svalbard (80N, 22 E). The main effort is concentrated in the Kongsfjord. This fjord has been identified as particularly suitable as a study site of contaminants processes, due to the remoteness of sources, and for influences of climatic changes, due to the documented relation between Atlantic water influx and the climatic index North Atlantic Oscillation (NAO). The water masses of the Rijpfjord have Arctic origin and serves as a strictly Arctic reference. Variable Atlantic water influx will not only influence abiotic contaminant exposure, but also food web structure, food quality and energy pathways, as different water masses carry different phyto- and zooplankton assemblages. This may affect the flux of contaminants through the food web to high trophic level predators such as seabirds and seals, due to altered food quality and energy pathways.
Mapping and monitoring of the snow cover with use of satellitte born optical instruments for (1) direct use of observations of climate change and (2) use of observations in climate modelling. Measurements of the snows spectral reflectance and other physical properties.
Polar stratospheric clouds play a key-role in polar ozone destruction. Cold temperatures in the vortex allow formation of these clouds. Depending on the PSC-type different formation-temperatures have to be reached. Synoptic temperatures do not always fall to these formation-temperatures, but waves in the atmosphere can lead to additional cooling of several 10 K, which allows PSC-formation. Whereas the wave-activity at the ESRANGE is very high due to hilly surrounding area, the orographic wave-activity at ALOMAR is expected to be rather small. Waves with long wavelengths will be present at both stations simultaneously. Coordinated measurements of temperature and aerosols will show both the large-scale wave-part and also the locally induced wave-part. Such measurements should allow identification of the different wavelngth scales and in addition contribute to a better estimate of the importance of wave-induced clouds for PSC-formation.
Study of the energy exchange between atmosphere, sea ice and ocean during freezing and melting conditions; within that, measurements of solar radiation (visible and UV) and optical properties, snow and sea ice characteristics, vertical heat and salt fluxes, oceanographic parameters.
Monitoring of the active layer near Ny Ålesund as part of the international monitoring scheme CALM (Circumpolar Active Layer Monitoring)
The objectives of this project is to study the effect of environmental stochasticity on the Svalbard reindeer population dynamics, nad further evaluate how this may affect reindeer-plant interactions.
Monitor the abundances of zooplankton at two transects along the coast 4-8 times a year, and in the Norwegian Sea in May and July-August
To monitor the inflow of salt and heat to through the Barents Sea to the Arctic Ocean.
This is an ongoing activity for monitoring variability in temperature and salinity in Barents Sea
To increase the understanding of temporal and spatial dynamics of cod and other commercial gadoid species, including the influence of environmental variability on population parameters, and make this knowledge available in assessable form for fisheries management.
Multi-institutional, international cooperative project to determine the possible responses of Arctic marine communities to future global climate change by comparing retrospective patterns in benthic composition and distributions to past climatic events in the Barents and Bering Seas.