Netherlands: projects/activities

Directory entires that have specified Netherlands as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 4 of 4
1. Barents Sea Marine Ecosystem

This study aims at reconstructing the Barents Sea marine ecosystem before the exploitation by man. This reconstruction will be made by using the existing archival resources on catch statistics from the 17th to 19th centuries in the Netherlands, Germany, Denmark and the United Kingdom, in combination with the present knowledge an animal behaviour and food web structure. Fieldwork is planned in two former hunting areas in Spitsbergen: the Smeerenburgfjord and the Storfjord to study both the structure of the recent marine ecosystem and the composition, size and dating of the recent bird rookeries. This information in combination with the historical data will be used to reconstruct the original ecosystem.

whaling Biology Populations Biodiversity Seabirds Food webs Ecosystems Marine mammals
2. Population ecology of arctic geese in relation to natural predation pressure

In order to manage populations of migratory geese a better understanding of the mechanisms that determine the size of these populations is needed. The objective of this project is to investigate such mechanisms, within the framework of the entire population of Dark-bellied Brent Geese, that winters in western Europe, and breeds in northern Siberia. The final objective of this project is to help predict future numbers of geese that will winter in western Europe in order to be able to forecast levels of agricultural damage caused by geese. Though hunting is an important factor determining the size of most goose populations, this is not a focal point in this project. Therefore this project focuses on a virtually non-hunted subspecies, viz. the Dark-bellied Brent Goose. Research activities Field work has been carried out in the Pyasina-delta in northern Taymyr, Russia during six consecutive summers from 1990 - 1995 in order to cover two complete lemming cycles. The project focuses the one hand on natural predators (like arctic foxes, Snowy Owls, Glaucous Gulls and Herring Gulls, and even Polar Bears) as a regulatory mechanism for the Dark-bellied Brent Geese, a virtually non-hunted subspecies. Lemming cycles have an important effect on the abundance and behaviour of most of these predators, and measuring lemming density forms an integral part of this study. On the other hand weather conditions, as well as the body condition of the geese themselves are being studied, because those factors are in themselves extremely important predictors of breeding success.

Biology Populations lemmings Biodiversity geese Food webs predation Reproduction breeding sucess Ecosystems
3. UV-radiation and its impact on genetic diversity, population structure and foodwebs of arctic freshwater

The aim of this international project is to measure and model arctic UV-radiation and assess the effects on freshwater planktonic organisms and foodwebs. The fieldwork and experiments are conducted at Ny-Alesund, Spitsbergen. The specific aim of our participation is to study the food web effects of UV-B stress by means of in-situ enclosure studies. In the laboratory we found that UV-B stressed algal cells may increase in volume and form a thicker cell wall. These changes in the algal cells may reduce their digestibility by zooplankton. Further the role of photopigments (like melanin and carotenoids), present in some zooplankters, will be studied in relation to the survival of these animals at high UV-B exposure. Research activities Grazing experiments with Daphnia pulex (melanic and hyaline) are performed in in-situ enclosures (under different UV exposures) in the Brandal Lagune during July. The green alga Chlamydomonas will be incubated in-situ under different UV exposures to assess the potential use of this alga as a biodosimeter for UV-B. Further the survival of melanic and hyaline daphnids will be tested in-situ.

Biological effects UV radiation survival photopigments Exposure Food webs Reproduction phytoplankton zooplankton
4. The ecological interaction between the Spitsbergen whaling and walrus hunting activities and the marine ecosystem in the 17th and 18th centuries

In the seventeent and eighteenth centuries intensive European whaling and walrus hunting took place in the waters around Spitsbergen, with many stations on the coast of the islands. The hunt was carried out in areas along the edge of pack ice and is therefore very sensitive to changes in the ice situation and climate. When, around 1650, climate and ice distribution changed, whales moved to the north. The whaling stations in the south of Spitsbergen were abandoned when stations in the north were still functioning. When, later, the ice situation deteriorated in the north as well, the stations were abandoned there too. Shore whaling changed into pelagic whaling. Because of these whaling and walrus hunting activities two very numerous large mammals were largely depleted and almost disappeared from the Spitsbergen waters. The pelagically feeding Greenland Right Whale and the bentically feeding walrus, whose initial stocks are estimated at 46,000 Greenland Right Whales and 25,000 walrus, were eliminated. This elimination has caused a major shift in the foodweb. The plankton feeding seabirds and polar cod strongly increased because of the elimination of the Greenland Right Whale, and the eider ducks and bearded seals increased because of the decrease of the number of walruses. This development has led to the enormous amount of seabird rookeries on the West coast of Spitsbergen.

whaling Biology whales Populations hunting Biodiversity Seabirds Food webs Ecosystems walrus Marine mammals