Directory entires that have specified Italy as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.
It is also possible to browse and query the full list of projects.
To edit or add records to any of the catalogs, log in or create an account.
The central objectives of the proposed ATMAS project are: to quantify the photo-chemically triggered NOx and HONO re-emission fluxes from permanently and seasonally snow-covered surfaces in the Arctic near Ny-Ålesund, to quantify the sources of NO3 in these snow-covered surfaces. In detail, the following scientific objectives of ATMAS can be distinguished: 1. to quantify atmospheric gradient fluxes of HNO3, HONO, particulate nitrogen compounds, and nitrogen in precipitation (snow and rain) above snow surfaces; 2. to quantify the emission of NOx and HONO from the snow pack as atmospheric gradient fluxes 3. to formulate an influx-outflow relationship that can be used in dependence on the snow type for (photo-)chemical atmospheric process models. The results of this research may be expanded to a regional (European) or global scale, to suggest how the NOx and HONO re-emission process and its consequences can be included into regional emission, dispersion and deposition models used in Europe.
One of the major benefits of performing measurements at Ny-Ålesund is the availability of a monitoring station on Mount Zeppelin, 474m asl. Given the typical height of the Arctic inversion layer during the envisaged measurement period, it will be possible to continuously monitor mercury and particulate in the free troposphere at the same time as performing ground level monitoring. The simultaneous measurements above and below the boundary layer should provide evidence for the mode of elemental Hg replenishment, whether it is from due to exchange with the free troposphere, or transport occurring at sea level. The proposed collaboration, by collecting data from two strategically placed Arctic stations, in the paths of different air masses and data from above the Arctic inversion layer would provide the most comprehensive set of Arctic mercury measurements performed to date.
Work program: Grab air samples will be collected in sampling sites not influenced by local emission sources for the determination of chlorofluorocarbons and of hydrogenated halocarbons. A 15 days sampling campaign is scheduled. Samples will be analysed in our Institution by using the analytical methodology here described and results obtained will be evaluated and compared with data obtained, by using the same analytical methodology, analysing air samples collected in other remote and semi remote sites. For the analysis of the hydrogenated halocarbon degradation products snow and water samples will be collected as well, according to the different season of the year. The collected samples will be then derivatized and analysed in our Institution for the evaluation of the presence of such compounds in remote areas.