Directory entires that have specified Italy as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.
It is also possible to browse and query the full list of projects.
To edit or add records to any of the catalogs, log in or create an account.
The central objectives of the proposed ATMAS project are: to quantify the photo-chemically triggered NOx and HONO re-emission fluxes from permanently and seasonally snow-covered surfaces in the Arctic near Ny-Ålesund, to quantify the sources of NO3 in these snow-covered surfaces. In detail, the following scientific objectives of ATMAS can be distinguished: 1. to quantify atmospheric gradient fluxes of HNO3, HONO, particulate nitrogen compounds, and nitrogen in precipitation (snow and rain) above snow surfaces; 2. to quantify the emission of NOx and HONO from the snow pack as atmospheric gradient fluxes 3. to formulate an influx-outflow relationship that can be used in dependence on the snow type for (photo-)chemical atmospheric process models. The results of this research may be expanded to a regional (European) or global scale, to suggest how the NOx and HONO re-emission process and its consequences can be included into regional emission, dispersion and deposition models used in Europe.
Observation of the high latitude auroral activity, during the winter season, by means of automatic all-sky camera(s). Study of the high-latitude auroral activity, focusing on the so-called “dayside auroras”: a particular phenomenon concerning the direct precipitation of the thermalised solar wind plasma through the geomagnetic cusps, favourably observable from the Svalbard. The analysis of the data, mainly devoted to the “dayside auroras”, will concern the comparison of the optical images obtained from both the station of Ny-Alesund and the new one of Daneborg (Greenland) with the data collected by Wind, ACE, DSMP, Polar, and Cluster satellites. Starting from the 2002 season, the joint auroral observations from Ny-Alesund and Daneborg allows the monitoring of a relevant area involved in the “dayside aurora” phenomena.
The 2003 field activity will be mainly dedicated to coring activity which includes: 1. the sampling of snow and ice cores from a Ny-Ålesund nearby glacier (midre Lovenbreen). 2. the collection of near coast (Kongsfjorden) and lakes sediments (maximum under pack depth 30 m). Sampling collection of ice and sediment cores will be performed using a portable, electric operated, sampling corer. The transport of all materials up to each sampling station should be performed with snowcats.
One of the major benefits of performing measurements at Ny-Ålesund is the availability of a monitoring station on Mount Zeppelin, 474m asl. Given the typical height of the Arctic inversion layer during the envisaged measurement period, it will be possible to continuously monitor mercury and particulate in the free troposphere at the same time as performing ground level monitoring. The simultaneous measurements above and below the boundary layer should provide evidence for the mode of elemental Hg replenishment, whether it is from due to exchange with the free troposphere, or transport occurring at sea level. The proposed collaboration, by collecting data from two strategically placed Arctic stations, in the paths of different air masses and data from above the Arctic inversion layer would provide the most comprehensive set of Arctic mercury measurements performed to date.
Work program: Grab air samples will be collected in sampling sites not influenced by local emission sources for the determination of chlorofluorocarbons and of hydrogenated halocarbons. A 15 days sampling campaign is scheduled. Samples will be analysed in our Institution by using the analytical methodology here described and results obtained will be evaluated and compared with data obtained, by using the same analytical methodology, analysing air samples collected in other remote and semi remote sites. For the analysis of the hydrogenated halocarbon degradation products snow and water samples will be collected as well, according to the different season of the year. The collected samples will be then derivatized and analysed in our Institution for the evaluation of the presence of such compounds in remote areas.
The goal of this project is to find the relationships between the UV solar spectral irradiances sampled at ground level in different cloudy situations. This information will be useful for a double target: to a better tuning of the UV Green model outputs and to evaluate the effects of the solar UV radiation on biological target. A second target is to have information about the cloud effect on computing the Umkehr model output (vertical Ozone profiles). This goal will be carried out installing in Ny-Ålesund a spectrophotometer Brewer to sample the UV irradiance synchronous with an automatic photo-camera taking pictures of sky. An analytical study of the two kinds of data allows finding the relationships searched.