Germany: projects/activities

Directory entires that have specified Germany as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 4 of 4
1. The Effect of solar UV on lipids in the planktonic food chain of polar freshwater ponds

Plankton of shallow polar freshwater water bodies is exposed to increasing levels of ultraviolet radiation (UVR) due to the limited water depth. Daphnia (Crustacea, waterflea) and algae are common representatives of the food chain in these water bodies. Daphnia almost exclusively use lipids for energy storage, which they obtain from their food (mainly algae). Therefore, Daphnia and algae are closely linked to each other. Preliminary experiments on the UV-induced damage in phyto- and zooplankton point to lipids as one of the key players. With this application we want to identify how algae specific lipids and fatty acids (FA) are modified by UVR. The factors modifying UV-doses to the animals and their food are depth of the waterbody and DOC (absorbs UV). A pondsurvey shall provide a wide spectrum on ponds which vary in DOC and depth. Lipid analysis of Daphnia and their food of these ponds as well as physical parameters of the pond waters shall identify correlations between UV-exposure and specific fatty acids. This shall enable us to estimate the effect of solar UVR on the freshwater plankton community in polar ponds.

Biological effects UV radiation freshwater plankton Climate change Exposure Arctic Food webs Diet Ecosystems lipids
2. Investigations on the diversity and role of microphytobenthos in marine and freshwater food webs.

The main research goal of this project is focused on trophic interactions within microbenthic communities in aquatic systems. Grazer-microalgae interactions are investigated by conducting field and laboratory experiments in order to get a closer idea of the microphytobenthos community structure itself. Especially the role of morphological and physiological adaptations of microalgae in the presence of specific meio- and macrofaunal predators are of great interest. In addition to that we have devised a new benthic sensor for the quantitative and qualitative assessment in situ of diverse populations of microphytobenthos with high spatial and temporal resolution, enabling rapid evaluation of the community structure and distribution.

microphytobenthos Food webs Sediments chlorophyll fluorescence marine and freshwater sediments Ecosystems benthic algae
3. Strategies of enzymatic food utilization in marine invertebrates

Marine invertebrates show a large variety of feeding strategies. These comprise mechanisms for catching prey, the uptake of food and the utilisation of various food sources. Morphological and anatomical adaptations allow for the capture and the ingestion of the food. However, the organism's physiological properties are the key for the efficient digestion, the nutrient uptake and the assimilation of food. In response to environmental factors marine organisms have developed highly specialised biochemical adaptations which are particularly reflected by the immeasurable diversity of digestive enzymes. The detailed function of digestive enzymes in marine invertebrates and, particularly, their synergistic interplay is still poorly understood.The overall aim is to investigate the mechanisms of enzymatic food utilisation and enzyme induction in different taxa of marine invertebrates in response to environmental factors.

Shelf seas Biology Food webs
4. Helgoland Foodweb Project

The aim of this project is to investigate and understand those factors that play a role in the seasonal dynamics of different functional groups in the pelagic zone of coastal seas. We investigate the interactions between bacteria, phytoplankton, zooplankton and juvenile fish in order to assess the importance of biological interactions in the seasonal succession.

Biology Fish Plankton Bacteria Food webs Ecosystems