Germany: projects/activities

Directory entires that have specified Germany as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 16 of 16
1. Population Biology and Monitoring of Dunlin

Studying the population biology and monitoring the population status of Dunlin. The population under study ilives in a coatal tundra area in Northern Norway.

Biodiversity Biological effects Biology Climate variability Terrestrial Birds

HIMOM will aim to provide a system of methods, the so-called Hierarchical Monitoring Methods (or HMM), to determine system status and changes which are expressed by biological and physical variations within inter-tidal areas. The HMM will aim to provide a management strategy tailored to the needs of End User involved in activities relating to the sustainable development of tidal flat areas around Europe. The HMM system will represent a hierarchical suite of activities, ranging from simple ground measurements of biota and physical characteristics to remote sensing of spectral reflectance properties for the analysis of basin scale systems.

Biology Environmental management Biodiversity Ecosystems
3. Helgoland Foodweb Project

To study the organisms involved in phytoplankton succession and the Key factors involved. This includes Bacteria-Algae, Algae-zooplankton and Zooplankton-Fish interactions. Aspects such as algal-grazer defence mechanisms and digestability of alage are core topics.

Biology Environmental management Biodiversity Ecosystems
4. Chemoreception of marine secondary metabolites

Cellphysiological investigations of the effects of marine secondary metabolites on isolated (sensory) cells

Biological effects Biology
5. Ecological and Physiological Investigations about the Impact of UV Radiation (UVR) on the Succession of Benthic Primary Producers in Antarctica

The succession of macro- and microalgal communities in the Antarctic will be investigated in field experiments under various UV radiation (UVR) conditions and in the absence or presence of grazers. The observed differences in the succession process will be correlated to physiological traits of single species, especially in spores and germlings, which are the most vulnerable stages in their life histories. Photosynthetic activity of the different developmental stages will be measured routinely. Additionally we plan the determination of pigment composition, C:N ratios, content of UV protective pigments and of possible DNA damage. The experiments will start in spring, concomitant to the time of highest UVBR, due to the seasonal depletion of the ozone layer in the Antarctic region. Supplemental laboratory experiments will be conducted to determine the effects of UVR on spores and germlings of individual species. In addition to the above analyses, we plan to examine of UVR induced damage of cell fine structure and of the cytoskeleton. The results of both the field and laboratory experiments will allow us to predict the consequences of enhanced UVR for the diversity and stability of the algal community.

Biological effects Biology UV radiation Environmental management Climate change Biodiversity Arctic Ecosystems Seaweeds
6. Strategies of enzymatic food utilization in marine invertebrates

Marine invertebrates show a large variety of feeding strategies. These comprise mechanisms for catching prey, the uptake of food and the utilisation of various food sources. Morphological and anatomical adaptations allow for the capture and the ingestion of the food. However, the organism's physiological properties are the key for the efficient digestion, the nutrient uptake and the assimilation of food. In response to environmental factors marine organisms have developed highly specialised biochemical adaptations which are particularly reflected by the immeasurable diversity of digestive enzymes. The detailed function of digestive enzymes in marine invertebrates and, particularly, their synergistic interplay is still poorly understood.The overall aim is to investigate the mechanisms of enzymatic food utilisation and enzyme induction in different taxa of marine invertebrates in response to environmental factors.

Shelf seas Biology Food webs
7. Detection of UV-B induced DNA damage

Detection of UV-B induced DNA damage on zoospores of brown algae

Biological effects Biology UV radiation CPD Temporal trends Ecosystems
8. Helgoland Foodweb Project

The aim of this project is to investigate and understand those factors that play a role in the seasonal dynamics of different functional groups in the pelagic zone of coastal seas. We investigate the interactions between bacteria, phytoplankton, zooplankton and juvenile fish in order to assess the importance of biological interactions in the seasonal succession.

Biology Fish Plankton Bacteria Food webs Ecosystems
9. Recruitment on hard bottom

Observation how UV-radiation affects recruitment on hard substrate in the upper sublitoral zone.

Shelf seas Biological effects Biology marine algae UV radiation Climate change Exposure Biodiversity Reproduction Temporal trends Ecosystems seaweeds
10. Physiological and cellular adaptation of higher plants and snow algae to the arctic environment

The objective of the planned work with arctic higher plants is to study the range of adaptation of photosynthetic metabolism, of antioxidative and sun screen compounds in a cold and reduced UV-B climate in comparison of data already raised from high alpine plants, which live partially under stronger cold and under different light regimes, especially higher UV-B. Further, the ultrastructure of leaf cells will be studied to clear, whether adaptations found in some high alpine plants occur similarly in arctic plants, and to connect such cytological results with metabolic functions. An additional comparison will be made with snow algae from Svalbard compared to those harvested on high alpine snow fields. It is the advantage of the planned work, that a number of investigations ranging from ultrastructural studies over different aspects of photosynthesis to assays of UV-B sensitive compounds and antioxidants will be conducted mostly with measurements and sample collection in the field during the same experimental day at one place. Therefore we expect a good connection of the data raised, back to the plant system and expect a much broader description of vitality and adaptation under the current conditions.

Arctic higher plants Biological effects Biology UV radiation Ultrastructural studies Alpine Arctic Snow algae Ecosystems Photosynthetic metabolism High alpine plants
11. Lipid biochemical adaptation of pteropods

The polar pteropod Clione limacina is characterised by high quantities of lipids with ether components (1-O-alkyldiacylglycerol=DAGE) in combination with odd-chain fatty acids. It is unknown why Clione and probably other pteropods have specialised in this manner. Furthermore the precursor of the biosynthesis of these compounds is still unknown. Therefore samples of Clione limacina and its only prey Limacina helicina will be collected by using plankton nets from small boats. The species will be kept in aquaria and feeding experiments with both species and food of different composition and nutritional value are planed.

Biological effects Clione limacina Biology Pteropods Arctic Limacina helicina Ecosystems Lipids
12. Ecological interactions between zoo- and phytobenthos with regard to defense-mechanisms against grazing pressure

Benthic macroalgae communities of the arctic ocean provide habitat, protection, nursery and nutrition to a large number of invertebrates. In contrast to temperate and tropical regions the basic ecological interactions between zoo- and phytobenthos of the Arctic are little understood. Therefore this project for the first time investigates biological and chemical interactions between invertebrates and macroalgae on Spitsbergen/Svalbard (Koldewey Station) with special emphasis on defense mechanisms against grazing pressure. Initial diving-investigations will map the invertebrate fauna which is associated with the macroalgae; the following feeding-experiments with herbivorous animals aim to selectively identify generalists, generalists with preference or specialists. Additional bioassays serve to reveal structural and/or chemical properties of those plants, which affect a specific impact on the grazing of herbivores. Our investigations on the chemical protection of the algae against grazing focus on the basic mechanisms and the chemical structure of potent secondary metabolites carried out in cooperation with natural product chemists.

Biological effects Biology Chemical protection Zoobenthos Phytobenthos Invertebrates Macroalgae Biodiversity Arctic Ecosystems
13. Succession of benthic communities in polar environments, benthic resilience in polar environments: A comparison

Succession of communities and individual growth of benthic invertebrates are more or less unknown in polar waters, but nevertheless are the basic parameters of understanding the benthic sub-ecosystem, delivering data for modelling and prediction of the system´s development. Three localities, two in the Antarctic and one in the Arctic, the Kongsfjord in Spitsbergen, have been choosen as investigation localities. Hard and soft substrates, which will be sampled in regular intervalls during the duration of the project, will be deployed at different depths. The analysis includes species composition, species growth and, with respect to soft substrates, sediment parameters.

Biological effects Biology Benthic communities Benthic invertebrates Marine benthos Biodiversity Arctic Ecosystems
14. Snow algae in Svalbard

This project (of Humboldt University of Berlin) is a long-study of the ecology and physiology of Arctic snow algae in Ny Ålesund region (Krossfjorden, Blomstrandhalvøya and Prins Karls-Forland). The main objectives are: - Characterision of snow algae fields and probe collections - Physiological characterision of single algae cells at different stages of development (e.g. by dielectric single cell spectroscopy, immuno-fluroescence microscopy and element analysis) - Cultivation in home laboratories.

Biology Biodiversity Arctic Snow algae
15. Effects of UV-radiation on macroalgae of the Kongsfjorden

Photoinhibition of photosynthesis by UV radiation, the formation of UV-screening pigments, DNA damage by UV radiation as well as DNA repair mechanisms will be determined in marine macroalgae of the Kongsfjord. Moreover, algae from different water depths will be transplanted by divers into areas with opposite light climate or covered by UV-screening filters and their physiological reactions tested. Additionally, the susceptability of the unicellular algal spores to UV-radiation will be tested. The results will allow insights into the effect of UV and photosynthetically active radiation on the zonation of macrocalgae and on the structure of phytobenthic communities. The data will be used to model the effects of increased of UV-radiation due to stratospheric ozone depletion on the Kongsfjord phytobenthic communities.

Biological effects Ozone Biology DNA UV radiation Phytobenthic communities Marine macroalgae Exposure Arctic Algae
16. Negative effects of UV radiation on organisms

Due to its high energy, UV radiation can induce severe damage at the molecular and cellular level. On the molecular level proteins and lipids, as well as nucleic acids are particularly affected. Conformation changes of certain proteins involved in photosynthesis, such as the reaction center protein (D1) of photosystem II or the CO2 fixing enzyme in the Calvin cycle (RuBisCo) lead to an inhibition of photosynthesis, and consequently to a decrease in biomass production. This might shift certain algal species into deeper waters, not reached by UV radiation. The aim of the studies is to demonstrate how strong an increase of UV radiation due to stratospheric ozone depletion will influence the depth distribution and biomass production of macroalgae, and which molecules and processes are most severely affected. Moreover, it will be studied, which stage in the life cycle of the individual species is most sensitive to UV radiation as it will be this particular stage, which in the end determines the upper distribution limit of a certain species on the shore.

Biology Marine algae UV radiation Seaweeds Environmental management Climate change Biodiversity Ecosystems