Directory entires that have specified Germany as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.
It is also possible to browse and query the full list of projects.
To edit or add records to any of the catalogs, log in or create an account.
The effects of stratospheric ozone depletion and of global warming on the marine biosphere are still underexplored, especially in the Arctic. Seaweeds are very important primary producers but are strongly susceptible to enhanced UV radiation and elevated temperatures, especially their spores. The UV susceptibility of spores has previously been invoked to determine the depth distribution of seaweeds. Therefore, we will investigate the effect of different radiation and temperature conditions on the ultra-structure, physiology and biochemistry of spores from various brown and green algae growing in different water depths. Moreover, we will study competition between zoospores of various species of brown macroalgae in order to get an insight about biotic factors structuring seaweed communities and also to explain more clearly the present seaweed zonation pattern.
Plankton of shallow polar freshwater water bodies is exposed to increasing levels of ultraviolet radiation (UVR) due to the limited water depth. Daphnia (Crustacea, waterflea) and algae are common representatives of the food chain in these water bodies. Daphnia almost exclusively use lipids for energy storage, which they obtain from their food (mainly algae). Therefore, Daphnia and algae are closely linked to each other. Preliminary experiments on the UV-induced damage in phyto- and zooplankton point to lipids as one of the key players. With this application we want to identify how algae specific lipids and fatty acids (FA) are modified by UVR. The factors modifying UV-doses to the animals and their food are depth of the waterbody and DOC (absorbs UV). A pondsurvey shall provide a wide spectrum on ponds which vary in DOC and depth. Lipid analysis of Daphnia and their food of these ponds as well as physical parameters of the pond waters shall identify correlations between UV-exposure and specific fatty acids. This shall enable us to estimate the effect of solar UVR on the freshwater plankton community in polar ponds.
The succession of macro- and microalgal communities in the Antarctic will be investigated in field experiments under various UV radiation (UVR) conditions and in the absence or presence of grazers. The observed differences in the succession process will be correlated to physiological traits of single species, especially in spores and germlings, which are the most vulnerable stages in their life histories. Photosynthetic activity of the different developmental stages will be measured routinely. Additionally we plan the determination of pigment composition, C:N ratios, content of UV protective pigments and of possible DNA damage. The experiments will start in spring, concomitant to the time of highest UVBR, due to the seasonal depletion of the ozone layer in the Antarctic region. Supplemental laboratory experiments will be conducted to determine the effects of UVR on spores and germlings of individual species. In addition to the above analyses, we plan to examine of UVR induced damage of cell fine structure and of the cytoskeleton. The results of both the field and laboratory experiments will allow us to predict the consequences of enhanced UVR for the diversity and stability of the algal community.
Study aerosol properties (size and composition) in the infrared spectral region
The major goal of the process study between April 15 and May 15, 2003 is to obtain quantified information on reaction path-ways, products and net deposition of mercury during Arctic sunrise.
In december 2001 the SAGE III experiment was successfully launched. The NASA science team of the SAGE III experiment has announced the Koldewey-Station in Ny-Aalesund as "anchor site" for validation, especially for such parameters as optical depth, aerosol extinction profiles and ozone profiles. Because of time coincidence NASA apprechiates support for the prospected validation activities for ENVISAT. This should be also considered as contribution to the NASA accepted project "Ground based Validation of SAGE III by the NDSC Primary Station at Ny-Ålesund, Spitsbergen" for SOLVE-2.
Description of parameters of the population dynamics of polar bivalve communities, first year: growth and reproductive cycle of the dominant Greenland cockles (Serripes groenlandicus)
In situ measurements in the stratosphere shall be carried out by means of different balloon soundings. The main goal is the investigation of aerosols in the tropopause-region and in the stratosphere during wintertime. Because generation of aerosols strongly depends on water vapour content, also water vapour will be measured.
The Italian Space Agency (ASI), in cooperation with CNR, would like to develop a balloon launch site at Ny-Ålesund. The polar stratospheric air circulation pattern can make it possible to perform Long Duration Balloon (LDB) Flights. The balloons would circumnavigate the northern Polar Regions collecting data in astrophysics, aeronomy, as well as other atmospheric, cosmic and biological sciences. The location on Svalbard is interesting for LDB flights because of : o easy access and transportation of equipment /material/personnel o well established infrastructures/support organization o the flight would occur over mostly unmanned areas o the recovery of the payload could easily happen on the land Currently two experiments are being built as LDB payloads in anticipation of launching from Ny-Ålesund in 2004 and 2005. These are astro-physics experiments to observe the galactic and cosmic microwave radiation. This facility would accommodate science teams from both Italy and around the world.
During the spring/summer transition, sea ice and snow properties change considerably in response to warming and the eventual reversal of temperature gradients within the snow and ice. Snow melt water percolates down towards the colder snow/ice interface, where it refreezes to form superimposed ice. On sea ice this process occurs probably longer and more intensive than on land, because throughout the summer the ice and underlying seawater is always colder than the snow. In Antarctica superimposed ice may actually form layers of some decimeters in thickness. The objective of this study is to investigate the main processes and boundary conditions for superimposed ice formation, in recognition of its importance for Antarctic sea ice, and its possible importance for Arctic sea ice in case of environmental changes due to future climate change. This will be performed by means of modeling as well as by combined measurements of the temporal evolution of snow and ice properties and the energy budget.
ASTAR, Arctic Study of Tropospheric Aerosol and Radiation is a a joint German (AWI Potsdam) - Japanese (NIPR Tokyo) campaign with participation from NASA LaRC Hampton, VA (USA). In addition to AWI, NIPR, and NASA LaRC the following institutions contributed to the project: Hokkaido University (Japan), Nagoya University (Japan), Norwegian Polar Institute Tromsoe/ Longyearbyen (Norway), NILU Kjeller (Norway), MISU Stockholm (Sweden), NOAA-CMDL Boulder, CO (USA) and Max Planck Institute for Aeronomy Katlenburg-Lindau (Germany). The campaign is based on simultaneous airborne measurements from the German research aircraft POLAR 4 and ground-based measurements in Ny-Ålesund. The main goals of the project are - to measure aerosol parameters of climate relevance, like extinction coefficient, absoprtion coefficients and phase function. - to create an Arctic Aerosol Data Set for climate impact investigation by using the regional climate model HIRHAM. - to carry out comparison measurements with the SAGE II (Stratospheric Aerosol and Gas Experiment) and the ground based Raman-Lidar.
In order to get detailed vertical ozone profiles above the range of standard electrochemical ozonesondes (typically 35 km), a radiosonde together with an optical ozonesensor is launchend with a special plastic foliage balloon. The balloon payload consists of a digital radiosonde (DFM 90) using GPS for altitude measurements and a two channel filter spectrometer (optical sensor) to measure the vertical ozone distribution up to more than 40 km altitude. The ozone profiles obtained by the optical sensors will be compared with ground-based microwave and lidar ozone observations as well as with the standard balloon-borne ozone measurements with electrochemical ozone sensors.
The aim of the project is to study the properties (radiative effects, composition) of aerosols using FTIR emission spectroscopy. To determine seasonal changes in aerosol properties the measurements will be carried out year round on a weekly schedule.
3-D GPR (ground penetrating radar) profiling of permafrost deposits and examination of their geocryologic and sediment properties for verification of GPR profiles. The scientific project has the following aims: To improve the understanding of how GPR (ground penetrating radar) reflections are generated in frozen ground; to reveal the main factors (geophysical and sedimentary) controlling electromagnetic reflection characteristics and their spatial continuity as examplarily studied along a continuous permafrost section, i.e. to distinguish between physical (dielectricity, conductivity and density) and sedimentary (ice/water content, grain size distribution, content of organic matter, texture) properties and estimate their proportionate quantity on the origin of the wave reflections.
Aim of the project is to develop a cost-effective long-term European observation system for halocarbons and to predict and assess impacts of the halocarbons on the climate and on the ozone layer. Beside the routine observations within the NDSC it is planned to perform with FTIR (Fourier Transform Infrared Spectroscopy) absorption measurements of CFCs (e.g. SF6, CCl2F2, CHF2Cl) and related species on much more observation days.
The objective of the planned work with arctic higher plants is to study the range of adaptation of photosynthetic metabolism, of antioxidative and sun screen compounds in a cold and reduced UV-B climate in comparison of data already raised from high alpine plants, which live partially under stronger cold and under different light regimes, especially higher UV-B. Further, the ultrastructure of leaf cells will be studied to clear, whether adaptations found in some high alpine plants occur similarly in arctic plants, and to connect such cytological results with metabolic functions. An additional comparison will be made with snow algae from Svalbard compared to those harvested on high alpine snow fields. It is the advantage of the planned work, that a number of investigations ranging from ultrastructural studies over different aspects of photosynthesis to assays of UV-B sensitive compounds and antioxidants will be conducted mostly with measurements and sample collection in the field during the same experimental day at one place. Therefore we expect a good connection of the data raised, back to the plant system and expect a much broader description of vitality and adaptation under the current conditions.
The polar pteropod Clione limacina is characterised by high quantities of lipids with ether components (1-O-alkyldiacylglycerol=DAGE) in combination with odd-chain fatty acids. It is unknown why Clione and probably other pteropods have specialised in this manner. Furthermore the precursor of the biosynthesis of these compounds is still unknown. Therefore samples of Clione limacina and its only prey Limacina helicina will be collected by using plankton nets from small boats. The species will be kept in aquaria and feeding experiments with both species and food of different composition and nutritional value are planed.
The aim of the project is to perform solar and lunar absorption measurements of atmospheric trace gases for the valdation of the SCIAMACHY satellite. Besides the routine observations within the NDSC it is planned to perform more intense measurements, especially during the satellite overpasses.
Situated in the Arctic Ocean the planetary boundary layer over Ny Ålesund is dominated by marine aerosols. Hight and time variation of boundary layer aerosols are examined with the tropospheric lidar system in Ny Ålesund. To determine the aerosol and its optical properties more exactly information from more wavelenghts are necessary as the sun-photometer at the Koldewey Station can provide. First combined evaluation of photometer and LIDAR data during the ASTAR-campaign in spring 2000 demonstrated feasibility and advantages of this method for the free troposphere. Furthermore this method is to be applied on boundary layer aerosol to research also its optical properties.
The subject is to determine the horizontal distribution of aerosol and trace gases by airborne measurements with the Gulfstream III (transarctic flight), ground based measurements in Ny Ålesund (Koldewey Station, Rabben) and satellite measurements with SAGE II / SAGE III. Objective is to get vertical and horizontal aerosol profiles, to research the trace gase variations in the Arctic and to compare remote sensing und in situ measurements.