Directory entires that have specified Finland as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.
It is also possible to browse and query the full list of projects.
To edit or add records to any of the catalogs, log in or create an account.
FUVIRC will serve ecosystem research, human health research and atmospheric chemistry research by providing UV monitoring data and guidance (i.e. calibration of instruments, maintenance of field test sites), research facilities (laboratories and accommodation), instruments and equipment.
The main objective of the facility is to enhance the international scientific co-operation at the seven Finnish research stations and to offer a very attractive and unique place for multidisciplinary environmental and atmospheric research in the most arctic region of the European Union. Factors such as, arctic-subarctic and alpine-subalpine environment, northern populations, arctic winters with snow, changes in the Earth's electromagnetic environment due to external disturbances and exceptionally long series of observations of many ecological and atmospheric variables should interest new users.
Distributed network (about 180 sites over Finland). Coverage over Finland mainly according to WMO recommendations including all Finnish polar regions. Some of the stations also include automatic daily snow depth observations and soil moisture monitoring instrumentation. Network type: Automatic operational weather station observations
Purpose is to estimate the pollution fallout in rain. Rainwater is analyzed for acidifying compounds, nutrients, POPs and metals. Project is managed by Finnish Environmental Centre (SYKE) and Finnish Meteorological institute (FMI).
GAW serves as an early warning system to detect further changes in atmospheric concentrations of greenhouse gases and changes in the ozone layer, and in the long-range transport of pollutants, including acidity and toxicity of rain as well as the atmospheric burden of aerosols.
Part of the continuous nationwide monitoring of radionuclides in Finland. The dose rate monitoring network in Finnish Lapland comprise 32 automatic measurement stations (Finnish nation-wide monitoring network consists of about 257 stations equipped with GM tubes). Three of the stations are equipped with LaBr3-detectors measuring a gammaspectrum with 10 minute intervals. The network is intended for civilian defence and surveillance purposes, not for research. It is a good early warning system in radiation fallout situation. Every monitoring station have individual alarm level: 7 days average dose rate + 0.1 microSv/h. The dense network indicate also the extent of the radioactive contamination.
Part of the continuous nationwide monitoring of radionuclides in Finland. The dose rate monitoring network in Finnish Lapland comprise 32 automatic measurement stations (Finnish nation-wide monitoring network consists of about 257 stations equipped with GM tubes). Three of the stations are equipped with LaBr3-detectors measuring a gammaspectrum with 10 minute intervals. The network is intended for civilian defence and surveillance purposes, not for research. It is a good early warning system in radiation fallout situation. Every monitoring station have individual alarm level: 7 days average dose rate + 0.1 microSv/h. The dense network indicate also the extent of the radioactive contamination.
Part of the continuous nationwide monitoring of radionuclides in Finland. STUK is responsible for monitoring of radioactivities in atmosphere. STUK operates a network of eight aerosol samplers from which three are located in Finnish, Lapland at Rovaniemi, Sodankylä and Ivalo. The sampling is done either weekly or bi-weekly. Gammaspectroscopic measurements are done in the laboratory in Rovaniemi. The lowest activities are detected at microBq/m3 level.
Monitoring of air quality and deposition.
Monitoring of direct deposition. Project is run by Finnish Meteorological Institute (FMI).
The overall objectives for operation of the station will follow those defined in the AMAP programme. The main interests are the levels and trends of airborne toxic pollutants (POPs and heavy metals) in northern Fennoscandia.
Atmosphere monitoring, cryosphere monitoring, atmosphere-biosphere interaction. In situ monitoring with automatic and manual systems (e.g. synoptic meteorological observations since 1908), measurements with ground-based reference systems of space-borne remote sensing instruments Network type: In situ monitoring with automatic and manual systems (e.g. synoptic meteorological observations since 1908), measurements with ground-based reference systems of space-borne remote sensing instruments
SMEAR I –station (Station for Measuring Ecosystem – Atmosphere Relations) was built in 1991-1992 at the side of Värriö Subarctic Research Station to monitor the pollution originating from Kola Peninsula. Continuous measurements of trace gases, aerosols, photosynthesis growth of Scots pines and meteorology have been carried on by the University of Helsinki since 1992. The station is located at the northern border of Salla municipality, some 6 km’s from the Russian border and built on top of a 390 m high forested hill. A 16 meter high weather mast is mounted next to the measurement cabin. The closest source area for air pollutants are the mining and metallurgical industry at the Kola Peninsula with the most important point sources being Nikel, Montcegorsk and Zapolyarny, respectively. In addition to the measurements carried on by the University of Helsinki, Finnish Meteorological Institute (FMI) has been measuring both sulphates and heavy metals using filter sampling techniques. Also, respiration and photosynthesis of the soil has been measured campaign wise in the vicinity of the station. Trace gases have been measured at four different levels (2, 6.5, 9 and 15 m) above the ground until recently the three highest sampling levels were taken off. The sulphur dioxide concentration is measured with a pulsed fluorescence analyzer. Nitrogen oxides (most importantly NO and NO2) are measured with an analyzer that is based on chemiluminescence and ozone is measured with a photometric analyzer. Total aerosol concentration has been measured since 1991 and the particle size distribution since 1997. The cut-off diameter of the size distribution measurements was changed from 8 nm to 3 nm in 2003. The total concentration is measured using CPC (Condensation Particle Counter) and the size distribution with DMPS (Differential Mobility Particle Sizer) system. Photosynthesis of Scots pines is measured from living twigs using chambers placed on top of the trees. Also, the growth in width and length are measured. A wide range of meteorological parameters are measured at five different levels (2, 4, 6.6, 9, 15 ja 16 m). Network type: Automatic and manual monitoring of atmosphere and biosphere (incl. SMEAR I –station and synoptic weather observations) as well as tracking and monitoring wide range of flora and fauna (e.g. game, insects and berries).
The national program of intensive forest monitoring is managed by the Finnish Forest Research Institute (Metla). In 2011 five of the 18 Finnish intensive monitoring plots situated in Finnish Lapland (Fig. 5.1.: Sevettijärvi, Pallasjärvi and three plots in Kivalo). Finnish national intensive forest monitoring network is part of pan-European ICP Forests network of ca. 800 plots (http://icp-forests.net/page/level-ii). ICP Forests (the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests) operates under the UNECE Convention on Long-range Transboundary Air Pollution. These intensive monitoring plots were established in co-operation of ICP Forests and European Commission in mid 1990’s. European Commission co-financed forest monitoring under forest monitoring regulations until the end of 2006 when the Forest Focus regulation (EC No 2152 / 2003) expired. During 2009-2011 part of these intensive forest monitoring plots were included in Life+-project called “FutMon” (Further Development and Implementation of an EU-level Forest Monitoring System: http://www.futmon.org/). Monitoring is carried out following the manual of ICP Forests (http://icp-forests.net/page/icp-forests-manual) and the monitoring data is submitted once a year to the ICP Forests database in Hamburg. Every year Programme Coordinating Centre of ICP Forests publishes technical and executive reports on the condition of forests in Europe. ICP Forests monitoring activities provide information also for a number of criteria and indicators of sustainable forest management as defined by the Forest Europe Ministerial Conference on the Protection of Forests in Europe. Network type: National nation-wide monitoring
The main objective is to study the importance of aerosol particles on climate change and on human health. Particularly, the focus will be on the effect of biogenic aerosols on global aerosol load. During the recent years it has become obvious that homogeneous nucleation events of fresh aerosol particles take frequently place in the atmosphere, and that homogeneous nucleation and subsequent growth have significant role in determining atmospheric aerosol load. In order to be able to understand this we need to perform studies on formation and growth of biogenic aerosols including a) formation of their precursors by biological activities, b) related micrometeorology, c) atmospheric chemistry, and d) atmospheric phase transitions. Our approach covers both experimental (laboratory and field experiments) and theoretical (basic theories, simulations, model development) approaches.
The overall goals of ACCENT are to promote a common European strategy for research on atmospheric composition change, to develop and maintain durable means of communication and collaboration within the European scientific community, to facilitate this research and to optimise two-way interactions with policy-makers and the general public. ACCENT will establish Europe as an international leader in atmospheric composition change research, able to steer research agendas through its involvement in major international programmes. ACCENT furthermore aims to become the authoritative voice in Europe on issues dealing with atmospheric composition change and sustainability.
The focus of this project is the improvement of water vapour measurement techniques in the upper troposphere and lower stratosphere. Routine measurements of water vapour with high accuracy in these altitudes are an unsolved problem of meteorological measurements up to now. Water vapor is the dominant greenhouse gas in the earth's atmosphere. Recent model calculations show that observed water vapour increases in the stratosphere contribute significantly both to surface warming and stratospheric cooling. In addition to climate change both the direct chemical and indirect radiative effects of stratospheric water changes in ozone chemistry are important as well. Despite of many activities in the past ten years, accuracies of the available methods for measuring the water vapour vertical profile in the free atmosphere are still not sufficient. Therefore one of the aims of the forthcoming EU COST Action 723 "The Role of the Upper Troposphere and Lower Stratosphere in Global change", is to improve sounding and remote sensing techniques of water vapour (see http://www.sat.uni-bremen.de/cost/). Another example of the planned work focusing on water vapour is proposed GEWEX (Global Energy an Water Cycle Experiment) Water Vapour Project (GVaP). See [SPARC 2000] and the references therein. The idea of LAUTLOS-WAVVAP comparison/validation experiment which brings together lightweight hygrometers developed in different research groups, which could be used as research-type radiosondes in UTLS region. These include the following instruments: Meteolabor Snow White hygrometer, NOAA frostpoint hygrometer, CAO Flash Lyman alpha hygrometer, Lindenberg FN sonde (a modification of Vaisala radiosonde) and the latest version of regular Vaisala radiosonde with humicap-polymer sensor. The experimental plan of LAUTLOS-WAVVAP is based on the regular launches of multi-sensor payloads from the Sodankylä meteorological balloon launch facility in January -February 2004. The aim is to study the effect of atmospheric conditions such as ambient temperature, water vapour or relative humidity, pressure or solar radiation for each participating hygrometer/radiosonde. Both night and daytime launches are planned. Apart from the intercomparison/validation experiment the campaign also have an scientific aim of studying the stratospheric PSC occurrence and their dependence on local temperature and the water vapour content. The campaign will be hosted by FMI Arctic Research Centre Sodankylä assisted by Vaisala Oyj and is a part of planned Finnish contribution to Cost 723 project. The campaign in Sodankylä is partly funded from LAPBIAT Facility, which belong to the EU program: Access to Research Infrastructures (see: http://www.sgo.fi/lapbiat/). References: SPARC Assessment of Upper Tropospheric and Stratospheric Water Vapor/SPARC Report No2/ December 2000
The main objective is to establish a scientific basis for the detection of the earliest signs of ozone recovery due to Montreal protocol and its amendments. To achieve this we will select the best long-term ozone and meteorological data sets available (by ECMWF and NCEP). Ozone data will be studied by using advanced multiple regression methods developed in this project. Meteorological data would allow to determine the dynamical changes and trends and assess their role in re-distribution of stratospheric ozone in recent decades and in order to force the Chemical Transport Models to assess the relative roles of chemistry and transport in ozone changes. Finally, the synthesis of the key objectives will improve the attribution of observed ozone changes to anthropogenic influences and to the variations in a natural atmosphere.