Denmark/Greenland/Faroe Islands: projects/activities

Directory entires that have specified Denmark/Greenland/Faroe Islands as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 81 - 100 of 111 Next
81. Occurence of "new" contaminants in marine biota in Greenland and the Faroe Islands

In addition to the persistent organic pollutants (POPs) analysed in former monitoring projects, other compounds of concern have been identified by the international community (e.g. OSPAR, AMAP), and analytical methods have been developed. These compounds include brominated flame retardants (BFRs), phthalates, polychlorinated naphthalenes (PCNs), perfluorooctane sulfonate (PFOS) and synthetic musk compounds. The aim of this project is to screen the marine environment of East and West Greenland and the Faroe Islands for these compounds. The analyses will be based on existing samples of pilot whale and fulmars from the Faroe Islands as well as marine sediments, shorthorn sculpins, ringed seals, minke whales from West Greenland and shorthorn sculpins, ringed seals and polar bears from East Greenland. As several trophic levels of the marine Arctic food chain are taken into account, the project will also result in information on the bioaccumulation of these compounds.

Organochlorines Fish Spatial trends Polar bear Persistent organic pollutants (POPs) Seabirds Sediments Marine mammals
82. A survey of contaminants in peregrine falcon eggs from South Greenland

The primary scope of the project is to investigate the long-term time trend of brominated flame retardants for the contamination and possible effects in relation to the contamination of peregrine falcon eggs. The contamination by the conventional POP compounds will also be identified. Totally 36 out of 53 collected eggs will be analysed. Time trend analysis will be performed based on a multi-variant methodology for a period of 18 years. The result will contribute to the assessment of organic pollutant contaminationm in Greenland including the effect on vulnerable wild life.

Peregrine falcon Biological effects Organochlorines PCBs Persistent organic pollutants (POPs) Pesticides Temporal trends
83. Nuuk Basic-Pilot study

The Nuuk-Basic project aims to establish a climate monitoring programme on the westcoast of Greenland. During two workshops, one being in Nuuk with field survey, framework for a future climate monitoring programme will be established. The programme builds on the concept and institutions already performing climate monitoring in NE-Greenland through ZERO (Zackenberg Ecological Research Operations).

Biological effects Climate change Biodiversity Ecosystems
84. Effects of lead intake in human blood

In Greenland lead contamination of the edible parts of seabirds, particularly eiders, is high because the birds have been killed with lead shot. Therefore bird-eaters are exposed to a high lead intake, probably often exceeding safe limits. In this study we will compare the lead level in human blood in a group of people from Nuuk, Greenland eating many birds with the level in a group eating few. This will enable us to assess if the high lead exposure is reflected in people and constitutes a health risk. The project is conducted in cooperation with The Medical Clinic in Nuuk and The Center for Arctic Environmental Medicine, Aarhus University.

Heavy metals Human health
85. AMAP Oil assessment

AMAP has decided to prepare an assessment of the environmental impacts of oil and gas developments in the Arctic and of pollution by petroleum hydrocarbons. The assessment is planned to be ready in 2006. NERI will co-ordinate the Danish/Greenlandic contribution.

PAHs Petroleum hydrocarbons Seabirds Sediments Oil and Gas
86. Mercury in peat bogs

Peat samples from Greenland already collected and dated will be analysed for mercury in order to assess term time trends of mercury deposition during this century.

Heavy metals Atmosphere Temporal trends
87. Human bioaccumulation of mercury and cadmium

In Greenland the human intake of mercury and cadmium from local diet is high. In an autopsy study, mercury and cadmium concentrations in humans has been analyzed. This study will make it possible to assess to what extent the high intake of mercury and cadmium is reflected in human tissue.

Heavy metals Human health Human intake
88. Contaminants in polar bears

Polar bears are at the top of the arctic marine food chain. Owing to the high lipid content of their diet, polar bears appear particularly prone to bioaccumulate organochlorines. Polar bears from East Greenland and Svalbard have higher contaminant levels than polar bears elsewhere in the Arctic. Levels of PCBs in these areas might negatively affect reproduction and survival. So far more than 130 polar bear samples have been collected since 1999. These samples are being analysed for organochlorines and pathological effects.

Organochlorines PCBs Heavy metals Polar bear Persistent organic pollutants (POPs) Reproduction Pesticides Temporal trends Marine mammals
89. AMAP Time Trend Programme

The project includes analyses of PCBs, organochlorine pesticides, chlordanes and brominated flame retardants in seals, birds and fish from Greenland. The programme covers a period of five years to investigate temporal trends in the concentration levels of organic pollutants in Greenland.

Organochlorines Heavy metals Persistent organic pollutants (POPs) Pesticides Temporal trends
90. ZERO-database

The ZERO database contains all validated data from the Zackenberg Ecological Research Operations Basic Programmes (ClimateBasis, GeoBasis, BioBasis and MarinBasis). The purpose of the project is to run and update the database with new validated data after each succesfull field season. Data will be available for the public through the Zackenberg homepage linking to the NERI database. The yearly update is dependent on that each Basis programme delivers validated data in the proscribed format.

Biological effects Hydrography Geophysics Climate Polar bear GIS Sediments Marine mammals Biology Populations Soils UV radiation Fish Discharges Sea ice Climate change Terrestrial mammals Ice Biodiversity River ice Arctic Seabirds Geochemistry Reproduction Permafrost Ecosystems
91. Controlled dose-control experiment on POP in sledge dogs

Organochlorines (OCs) concentrate through the arctic marine food webs and are stored in the adipose tissue due to their high lipophilic and persistent characteristics. The polar bears receive high doses of POPS through their diet and a controlled experimt was need to resolve effect on the immune system and effects on internal organs. Such a controlled experiment on sledge dogs as a replacement test organism for the polar bear was conducted from 2004-2006 to investigate dose-response effects.

Biological effects Organochlorines PCBs Polar bear Exposure Persistent organic pollutants (POPs) Reproduction Pesticides Diet Marine mammals
92. A simple model of transfer of atmospheric mercury to carnivores

The present study will establish a link between the mercury levels in the abiotic environment (e.g. historical records of mercury data in peat bogs, the ice sheet or marine sediments) with levels in carnivore species (polar bear, birds of prey). These results can be used in a model for predicting past and future development of the mercury loads in high trophic biota. This in turn will enable us to evaluate if changes in mercury levels in the atmosphere are reflected in species at higher trophic levels of the Arctic ecosystem. The project will expand the longevity and certainty of the biotic time series of mercury to about 150 years by analyzing museum samples of bird feathers and polar bear hair and teeth. The project is part of the project “Fate of mercury in the Arctic (FOMA)”.

Heavy metals Polar bear Seabirds
93. The fate of Hg in the marine food web along west Greenland

The aim of the project is to describe and model mercury accumulation up the Arctic food chain. Based on existing knowledge from old projects and new measurements made on frozen tissue samples. This project will contribute to a better understanding of the fate of mercury in the Arctic.

Heavy metals Food webs
94. AMAP Core Monitoring Programme 2004-2005

The project studies the development through time of contaminants (heavy metals and organic pollutants) in animals in Greenland.

Organochlorines Heavy metals Fish Persistent organic pollutants (POPs) Seabirds Temporal trends
95. Detection of spatial, temporal, and spectral surface changes in the Ny-Ålesund area 79 N, Svalbard, using a low cost multispectral camera in combination with spectroradiometer measurements.

Changes in surface reflection at the arctic tundra at Ny-Ålesund, Svalbard (79 N) were monitored during the melting season 2002 using a low cost multispectral digital camera with spectral channels similar to channels 2, 3, and 4 of the Landsat Thematic Mapper satellite sensor. The camera was placed 474 m above sea level at the Zeppelin Mountain Research Station and was programmed to take an image automatically every day at solar noon. To achieve areal consistency in the images (which is necessary for mapping purposes) the images were geometrically rectified into multispectral digital orthophotos. In contrast to satellite images with high spatial resolution the orthophotos provide data with high spatial and high temporal resolution at low cost. The study area covers approximately 2 km2 and when free of snow, it mainly consists of typical high arctic tundra with patchy vegetation and bare soil in between. The spectral information in the images was used to divide the rectified images into maps representing different surface classes (including three subclasses of snow). By combining classified image data and ground measurements of surface reflectance, a model to produce daily maps of surface albedo was developed. The model takes into account that snow-albedo decreases as the snow pack ages; and that the albedo decreases very rapidly when the snow pack is shallow enough (20-30 cm) to let surface reflectance get influenced by the underlying ground. Maps representing days with no image data (due to bad weather conditions) were derived using interpolation between pixels with equal geographical coordinates. The time series of modeled albedo-maps shows that the time it takes for the albedo to get from 80% to bare ground levels varies from less than 10 days in areas near the coast or in the Ny-Ålesund settlement till more than 70 days in areas with large snow accumulations. For the entire study area the mean length of the 2002 melting period was 28.3 days with a standard deviation of 15.1 days. Finally, the duration of the snowmelt season at a location where it is measured routinely, was calculated to 23 days, which is very close to what is the average for the last two decades.

Digital camera Hydrography Mapping Geophysics Climate variability Orthophotograph Spatial trends Remote sensing Orthophoto Modelling Arctic GIS Spectral Temporal trends Ecosystems
96. ClimateBasis

Projects at Zackenberg Station Relevance: Climate Change Project title: Duration: Start year: 1995 End year: Continuing Responsible institution: Relevance: Climate Change Changes in UV radiation and its effects

Climate variability Climate change
97. A study of palynodebris and dinoflagellate cysts in Holocene sediments from Greenland and Faeroe Islands fjords and North Atlantic deep-water sites

The project aims at studying the lateral and vertical (stratigraphic) variations in the composition of particulate organic debris (palynodebris sensu Boulter and Riddick, 1986) from a suite of Holocene sediment cores from off W, S, and SE Greenland, via the Reykjanes Ridge south of Iceland, to the Faeroe Islands. The main objective is to elucidate changes in paleoenvironmental and - hydrographic parameters such as temperature, trophic level, salinity, and energy in the water mass. In particular, the study aims at mapping the distribution of different species of organic walled dinoflagellate cysts in relation to these parameters.

Geology Hydrography Dinoflagellate cysts Climate change Biodiversity Arctic Holocene Palynology Sediments Ocean currents Temporal trends
98. Radionukleider i Grønlandske miljøprøver - Radionuclides in Greenlandic environmental samples

1: Cs-137 trend in marine sediments from East and West Greenland - to be compared with As data 2: Cs-137 in Greenland reindeer from areas with and without lichen

Greenland Cs-137 Radionuclides Marine sediments Reindeer Sediments
99. Biological core programme

The major aim in AMAP is to monitor the levels of anthropogenic contaminants in all major compartments of the Arctic environment, and assess the environmental conditions in the area. This core programme will provide the Danish/Greenlandic authorities with data which make it possible to take part in the international AMAP programme under the Arctic Council. In order to monitor the levels of anthropogenic pollutants, samples will be collected and analysed. The measured components will include heavy metals and persistent organic pollutants in order to allow for spatial and temporal trends in Arctic biota. The program has taken in consideration the recommended importance of persistent organic pollutants and mercury and the importance of the marine food chain. The core program focuses on areas with high population density or areas with high levels of pollutants in the environment.

Organochlorines PCBs Heavy metals Fish Radioactivity PAHs Spatial trends Environmental management Caribou Terrestrial mammals Arctic Persistent organic pollutants (POPs) Seabirds Reindeer Dioxins/furans Sediments Pesticides Temporal trends Marine mammals
100. Anthropogenic radionuclides in Greenland and the Faroe Islands

It is suggested to analyse a variety of samples from Greenland and the Faroe Islands for radionuclides. The technetium pulse now under way from England will be surveyed in seawater, seaweed and shrimp, and time trends in concentrations of caesium-137, strontium-90 and plutonium will be monitored in selected components of marine, fresh water and terrestrial environments. As far as possible, the sampling programme is coordinated with other sampling programmes in Greenland and the Faroe Islands. It is suggested to re-investigate the weapons plutonium pollution in Bylot Sound off Pituffik on a 5-year basis i.e. year 2002 in the present AMAP programme

technetium marine food plutonium strontium caesium Radionuclides long-distance transport AMAP