Canada: projects/activities

Directory entires that have specified Canada as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 16 of 16
1. Quantifying and reducing uncertainty in model calculations of global pollution fate

The main objective of the project is to describe quantitatively with model calculations the global distribution behaviour of persistent organic contaminants, and to establish credibility in the results of these simulations.

Arctic Contaminant transport Exposure Long-range transport Modelling PCBs Persistent organic pollutants (POPs) Pesticides Pollution sources Spatial trends Temporal trends
2. Assessment of spatial and temporal patterns of HCH isomers in the arctic environment

In order to assess the spatial and temporal patterns of the a-, b- and g-isomers of hexachlorocyclohexane (HCH) in the arctic biotic and abiotic environment, it is proposed that: (1) concentrations and ratios of HCH isomers be compared over time in air, water, seals, beluga, polar bears and seabirds to determine any shifts in isomeric ratios and how those shifts interrelate among the various media, and (2) concentrations and ratios of HCH isomers be compared spatially in the abiotic and biotic media and reasons for any patterns explored.

Shelf seas Pathways Organochlorines trends fish Long-range transport seawater Spatial trends HCH isomers Modelling Polar bear Arctic Persistent organic pollutants (POPs) sediment Seabirds Sediments Atmosphere Ocean currents Temporal trends zooplankton Marine mammals air
3. Retrospective survey of organochlorines and mercury in arctic seabird eggs

In order to address the the question of utility of arctic seabird eggs as an indicator of contaminant temporal trends, it was proposed that: (1) archived arctic seabird egg contents be re-analyzed for organochlorines according to a standardized pooling and analytical protocol in order to confirm whether those residues have been decreasing since the mid-1970s, (2) archived arctic seabird egg contents be analyzed for mercury and selenium to determine whether or not those levels have been increasing or decreasing since the mid-1970s, (3) egg contents and adult livers be analyzed by full scan and ICP to identify any "new" or previously unidentified organochlorines (MS full scan) or metals (ICP) which may have entered the Canadian arctic food chain.

Organochlorines Canadian Arctic Heavy metals Exposure Arctic Seabirds metals Temporal trends
4. Role of contaminants in seaduck population decline: metals in oldsquaw

In order to determine the role of contaminants in declining populations of seaducks, it is proposed that: (1) archived samples of Oldsquaw collected from their Canadian arctic breeding grounds be analyzed for Hg, Se and Cu (in liver), Cd (in kidney), Pb (in wing bone), and selected samples be screened for a wider range of metals (in liver), and (2) archived samples of Oldsquaw wing bone be analyzed for stable isotopes (13C/12C; 15N/14N, and 34S/32S) and strontium (Sr) to discriminate whether birds from certain geographical areas of the Arctic are overwintering in freshwater (i.e. Great Lakes) or marine environments.

Populations Heavy metals stable isotopes Exposure Arctic oldsquaw metals
5. Assessment of organochlorines and metal levels in Canadian arctic fox

1) To determine tissue residue levels of organochlorines and metals in arctic fox feeding in or near an arctic coastal environment. 2) To assess whether or not residue levels found in arctic fox pose a potential wildlife health risk. 3) As part of a pilot project, to determine residue levels and assess potential wildlife health risk to wolverines feeding in or near a coastal environment.

Biology Organochlorines Heavy metals stable isotopes Exposure Arctic metals Diet arctic fox wolverine
6. C-ICE 2001

The Collaborative Interdisciplinary Cryospheric Experiment (C-ICE) is a multi-year field experiment that incorporates many individual projects, each with autonomous goals and objectives. The science conducted has directly evolved from research relating to one of four general themes: i. sea ice energy balance; ii. numerical modeling of atmospheric processes; iii. remote sensing of snow covered sea ice; and iv. ecosystem studies.

Atmospheric processes Biology Mapping Climate variability Spatial trends Remote Sensing Sea ice Climate change Shipping Modelling Ice Polar bear Oceanography Arctic Ice cores GIS Energy Balance Food webs Data management MicroWave Scattering Atmosphere Ocean currents Ecosystems Marine mammals
7. Decision-Making and Diet in the North: Balancing the Physical, Economic and Social Components

Specifically, this project aims to: 1. Review and organize the reported social and cultural benefits and risks associated with a traditional diet and related activities (hunting, preparation, consumption); 2. Develop and apply a survey tool to increase our understanding of the determinants of diet behavior; 3. Develop a conceptual framework for the ordered presentation of this information; 4. Link this framework with those organizing information on health and economic benefits and risks associated with traditional foods.

Indigenous people Arctic Diet Human health
8. Effects and Trends of POPs on Polar Bears

LONG TERM: Determine the effects, at the individual and population level, of persistent organic pollutants (POPs) and their metabolites in the polar bear; determine trend of POPs in the Arctic marine environment using polar bear tissues as a biomonitor. SHORT TERM: a. Determine 10-year temporal trends of POPs in the Hudson Bay Sub-Arctic Ecosystem from 1990-1989 by analysis of archived polar bear biopsy samples, including changes in enantiomeric composition of -HCH and chlordane compounds and ratio of -HCH/-HCH (cross-referenced to separate proposal on HCHs). b. Determine if there is selective tissue distribution of the enantiomers of chiral contaminants in polar bears, which may influence target organ toxicity, by analysis of archived polar bear samples. c. Determine the endocrine disrupting effect of POPs on testosterone and PCB metabolite profiles by in vitro metabolism studies using polar bear liver microsomes. d. In collaboration with CWS P&N Region, the Norwegian Polar Institute and the Norwegian Veterinary Institute, determine the immunotoxic effects of PCBs and other organochlorines in polar bears throughout a gradient of exposure (Hudson Bay, low; Svalbard, high). e. Determine the effects of hydroxy-PCBs on circulating thyroid hormone and vitamin A concentrations.

Biological effects Organochlorines PCBs Long-range transport Spatial trends Pollution sources Terrestrial mammals Polar bear Exposure Arctic Persistent organic pollutants (POPs) Dioxins/furans Temporal trends Marine mammals
9. Contaminants in arctic sea ducks

To examine concentrations and biological effects of selected trace elements in king and common eiders from various locations in the Canadian arctic.

Biological effects endocrine disruption Heavy metals immune function king eiders Arctic Seabirds common eiders sea ducks
10. Mercury Measurements at Amderma, Russia

This project aims to establish continuous Total Gaseous Mercury (TGM) measurements at Amderma, Russia to provide circumpolar data in concert with international sampling efforts at Alert (Nunavut, Canada), Point Barrow (Alaska, USA) and Ny-Ålesund (Svalbard/Spitsbergen, Norway). The objectives of this project are to determine spatial and temporal trends in atmospheric mercury concentrations and deposition processes of mercury in the Arctic in order to assist in the development of long-term strategies for this priority pollutant by: A) measuring ambient air TGM concentrations in the Russian Arctic; B) investigating and establishing the causes of temporal variability (seasonal, annual) in mercury concentrations so that realistic representations (models) of atmospheric pathways and processes can be formulated, tested and validated; and C) studying the circumpolar behaviour of mercury by comparison with data from other polar sites.

Pathways Atmospheric processes gas-phase mercury mercury Heavy metals Long-range transport Spatial trends Hg Arctic Atmosphere Temporal trends particulate-phase mercury Arctic springtime depletion of mercury total gaseous mercury
11. Mercury Measurements at Alert

The objectives of the project are: A) to determine temporal trends in atmospheric mercury concentrations and deposition processes of mercury in the Arctic, and to assist in the development of long-term strategies for this priority pollutant by: i) measuring ambient air Total Gaseous Mercury (TGM) concentrations in the Canadian Arctic (Alert) and investigating the linkage to elevated levels of mercury known to be present in the Arctic food chain; ii) investigating and establishing the causes of temporal variability (seasonal, annual) in mercury concentrations so that realistic representations (models) of atmospheric pathways and processes can be formulated, tested and validated; iii) studying the chemical and physical aspects of atmospheric mercury vapour transformation (oxidation) after polar sunrise and the resultant enhanced mercury deposition to the sea, snow and ice surfaces each year during springtime; and iv) obtaining a long-term time series of atmospheric mercury (TGM) concentrations at Alert for the purpose of establishing whether mercury in the troposphere of the northern hemisphere is (still) increasing and if so, at what rate; B) to establish a sound scientific basis for addressing existing gaps of knowledge of the behaviour of mercury in the Arctic environment that will enable international regulatory actions to reflect the appropriate environmental protection strategies and pollution controls for the Arctic by: i) studying the relative roles of anthropogenic and natural sources of mercury so as to clarify understanding of the atmospheric pathways leading to the availability of mercury to Arctic biota; ii) studying tropospheric TGM depletion mechanisms/processes leading to enhanced input of mercury to the Arctic biosphere in spring; iii) undertaking essential speciated measurements of particulate-phase and/or reactive gaseous-phase mercury as well as mercury in precipitation (snow/rain) to quantify wet and dry deposition fluxes into the Arctic environment; and vi) providing the scientific basis for the information and advice used in the preparation and development of Canadian international strategies and negotiating positions for appropriate international control objectives.

Pathways Atmospheric processes gas-phase mercury mercury Heavy metals Long-range transport Spatial trends Hg Arctic Atmosphere Temporal trends particulate-phase mercury Arctic springtime depletion of mercury total gaseous mercury
12. Northern Contaminants Air Monitoring: Organochlorine Measurements

The objectives of this project are: A) to determine whether atmospheric concentrations and deposition of priority pollutants in the Arctic are changing in response to various national and international initiatives by: i) continuing to measure the occurrence of selected organochlorines in the arctic atmosphere at Alert, NWT for a period of three more years (measurements started in 1992), in parallel with identical measurements in western Russia at Amderma; ii) sampling at the Kinngait (Cape Dorset) station in 2000/2001 for the purpose of detecting change in the eastern Canadian Arctic by comparison with observations made four years earlier (1994-1996) at this site; and iii) analyzing and reporting data from Alert, Tagish, Kinngait and Dunai Island thereby providing insight into pollutant trends and sources. B) Ensuring the effective utilization of information at the international negotiating table in order to achieve the appropriate restrictions on release of pollutants of concern for the arctic environment by: i) contributing to the next assessment arising from the second phase of the Northern Contaminants Program (Canada) and specifically, the revised Assessments on POPs and Heavy Metals as part of the Arctic Monitoring and Assessment (AMAP) Program Work Plan; and ii) advising Canadian negotiators in preparing reasonable, practical strategies of control.

Organochlorines PCBs PAHs Long-range transport Contaminant transport Arctic Persistent organic pollutants (POPs) Data management Pesticides Atmosphere
13. Fluxes of Mercury from the Arctic Ice Surface during Polar Sunrise Conditions and Melt Conditions

The objectives of this project are: A) to determine the pathway for the transfer of mercury in snowmelt to sea water during the melt period at Alert; B) to determine the extent of open water and wet ice in the summer Arctic as it affects the surface exchange of Hg using satellite radar imagery; and C) to determine the atmospheric dynamics associated with the photochemistry of mercury episodically during the polar sunrise period.

trace metals satellite radar imagery radar Atmospheric processes melt open water acoustic sounding mercury Mapping Heavy metals Long-range transport Spatial trends Contaminant transport Hg Modelling Ice Arctic GIS radar imagery wet ice Atmosphere atmospheric boundary layer boundary layer
14. New Persistent Chemicals in the Arctic Environment

The objectives of this project are A) to determine coplanar polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), brominated diphenyl ethers (BDPEs), chlorophenolic compounds and chloroparaffins in air from arctic monitoring stations; and B) to search for other "new" chemicals in the arctic environment, not currently monitored by Canada's Northern Contaminants Program (NCP) but of potential concern based on known persistence, extent of usage and toxicology.

Sources PCAs BDPEs Pollution sources Exposure monitoring chloroparaffins Sediments Pesticides SCCPs Human intake Marine mammals new chemicals polychlorinated naphthalenes Pathways Organochlorines PCBs chlorinated paraffins Long-range transport brominated diphenyl ethers Spatial trends HAAs Arctic PCNs Persistent organic pollutants (POPs) synthetic musks haloacetic acids Atmosphere polychlorinated alkanes
15. Global Gridded gamma-HCH and Endosulfan Emission Inventories

The aim of this project is to compile information and create a computerized database of historical and present global lindane and endosulfan usage data as well as emission data for gamma-hexachlorocyclohexane (gamma-HCH) and endosulfan with 1 degree x 1 degree lat/long resolution. The objectives of this project are: A) to create global gridded g-HCH and endosulfan emission inventories; B) to study the linkage between global g-HCH and endosulfan use trends and g-HCH and endosulfan concentration trends in the Arctic; and C) to assist in comparing concentrations and ratios of different HCH isomers in the Arctic biotic and abiotic environments.

Sources emission inventory b-HCH alpha-HCH Pollution sources Contaminant transport Modelling GIS a-HCH hexachlorocyclohexane Pesticides endosulfan beta-HCH Organochlorines Mapping lindane ß-HCH Long-range transport Discharges Spatial trends gamma-HCH gridded Emissions HCH Arctic Persistent organic pollutants (POPs) g-HCH Data management Atmosphere Temporal trends
16. Spatial trends in loadings and historical inputs of mercury inferred from Arctic lake sediment cores

1. To determine the depth profiles of mercury (Hg) and lead (Pb) as well as manganese (Mn) and iron (Fe) in fifteen dated Arctic sediment cores over a three year period. Mercury is the main focus. 2. To quantify geographical trends in fluxes of the mercury and its enrichment factors in Nunavut, NWT, Nunavik, and Labrador. To link mercury findings with those of paleolimnological indicators, POPs, as well as indicators of biogeochemical processes of manganese and iron, all of which are obtained from the same cores, or cores from the same sites whenever possible. 3. To complement existing data on mercury in Arctic sediment cores with data generated over a much wider latitudinal and longitudinal range than previous work in order to provide a better understanding of Hg in Canada North. 4. Secondary to Hg, to provide loading data for Pb which may help elucidate the understanding of Hg pathways and sources.

Pathways Sources Metals pollution Canadian Arctic Mercury Heavy metals Spatial trends Arctic Sediments Remote lakes