Sweden: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Sweden as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 20 of 22 Next
1. National Survey of Forest Soils and Vegetation


This project has been divided into two new projects: The Swedish Forest Soil Inventory and the Swedish National Forest Inventory.

The Swedish National Forest Inventory has the task of describing the state and changes in Sweden's forests. The inventory gathers basic information on forests, soils and vegetation. It includes most aspects concerning soils, for example: soil types, soil chemistry including organic matter, water conditions and content of stones and boulders. Acidification, nitrogen deposition and the contribution by soils to climate change are some of the current issues dealt with. Regularly reported variables are: forest state, injuries, and growth, logging operations, new forest stand, and environmental assessment. Invented variables on permanent sampling plots include: position in the landscape, field vegetation, site conditions, soil sampling, assesment of soil characteristics, chemical analysis of soil in O-, B-, BC- and C-horizons.

acidification Biodiversity Biological effects Contaminant transport Data management Ecosystems Environmental management forest Forest damage Geochemistry Geology GIS Long-range transport Mapping Modelling Pathways Soils Spatial trends Temporal trends vegetation
2. Sweden Soil and Vegetation Inventory of Arable Land

The first sampling for the soil and vegetation inventory of arable land was done in 1994-1995. The program covers arable land in Sweden and is designed to describe the state of Swedish arable land and the quality of the crop in relation to soil status, cultivation measures, and means of operation. At present soil sampling is made in 2000 fixed sampling points visited every 10th year.

Ecosystems Soils
3. Gammtratten IM

At present, Sweden has 4 integrated monitoring (IM) sites that are part of a European network on integrated monitoring with an extensive measurement program. One of these sites, Gammtratten, situated in central Västerbotten, monitors several variables. This program is part of the International Cooperative Programme (ICP) on Integrated Monitoring (IM) of Air Pollution Effects on Ecosystems In Sweden there are three IM-sites, out of which Gammtratten in northern Sweden is one. The IM program at Gammtratten is performed by a consortium including IVL, SGU and SLU-EA. Basically there are three types of monitoring at the IM-sites, viz. Climatic, Chemical and Biological observations. Below is a list of the different analysis programs Air Concentration: SO2, NO2 Bulk deposition: pH, Cond, NO3-N, NH4-N, SO4-S, CL, Ca, Mg, Na, K, (Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As) Throughfall: pH, Cond, NO3-N, NH4-N, SO4-S, CL, Ca, Mg, Na, K, (Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As) Soil water: pH, Cond, tot-N, org-N, NO3-N, NH4-N, Tot-P, PO4-P, DOC, SO4-S, CL, Alk, Ca, Mg, Na, K, Al, Al-tot, Al-org, Al-inorg, Fe, Mn, Cu, Pb, Zn, Cd, Hg, MetylHg, Cr, Ni, Co, V, As Groundwater: All years: pH, Cond, Si, NO3-N+NO2-N, NH4-N, PO4-P, TOC, SO4-S, CL, Alk/acidity, Ca, Mg, Na, K, Al, Fe, Mn, Cu, Pb, Zn, Cd, and some years also Hg, Metyl-Hg, Cr, Ni, Co, V, As Stream water: All years pH, Cond, NO3-N, NH4-N, PO4-P, TOC, SO4-S, CL, Alk/acidity, tot-N, tot-C, Ca, Mg, Na, K, Al, Fe, Mn, runoff volume and some years also Hg, Metyl-Hg, Cu, Pb, Zn, Cd and labile Al. Soil chemistry: pH in water extracts, exchange acidity, exchangeable Ca, Mg, Na, K, Al, Mn, and Fe, base saturation and total content of C, N, P, S, Cu, Zn, Pb, Cd and Hg Litter fall: Amount of litter (dw per unit area), total P, C, N, and S, K, Ca, Mg, Na, Al, Mn, Fe and during special years also Cu, Zn, Pb, Cd, Hg Litter decomp.: Dry weight loss from standard needles of Scots pine Soil respiration: CO2 -evolution per hour at 20oC, pH, Pb, Cd, Hg in OF-layer Understorey veg.: Field vegetation: Species, coverage, fertility, trees: speecies, coordinates, dbh, heiight, vitality. Down logs and stumps: species, dbh, degree of decomposition Needle chemistry: Total-P, tot-C, tot-N, and tot-S, K, Ca, Mg, Na, Al, Mn, Fe, Cu, Zn, Pb, Cd, Hg, arginin Biomass: Biomass, tot-C, tot-N, tot-P, K, Ca, Mg, Fe, Mn, Zn, Cu, B Forest injuries: Needle loss, dicolouring of needles, other injuries, tree class Simulated water balance: Precipitation, Evaporation, Runoff, Soil water, Snow Network type: integrated monitoring

Climate Ecosystems Environmental management
4. Sweden National Forest inventory (RIS-RT)

The sample plot-based national forest inventory (RIS-RT) has been a continuous activity at SLU (and the forest research organizations existing before SLU) since 1923. All Sweden is included except the subalpine birch forest along the mountain chain. The national forest inventory is part of Sweden’s official statistics and is maintained by the Department of Forest Resource Management (SLU-FRM). The sampling strategy combines random and fixed plots and covers the country every 5 years. Each year around 10 000 sample plots are field surveyed nationwide. Approximately 200 variables are recorded for each plot.

Ecosystems Environmental management
5. Sweden phenology

Since 2007, SLU has conducted daily phenology observations on forest trees (birch, Scots pine, and Norway spruce) during the spring at four sites in northern Sweden (Fig. 5, Table 5, ##7.2, 8.2, 13.2, and 14.2) In addition, the phenology of 15 plant species is observed at two sites and of birch at one site, all at Abisko (Table 5, #1.11, and 1.12).

6. ICP Forest Program in Sweden

At present, Sweden has 4 integrated monitoring (IM) sites that are part of a European network on integrated monitoring with an extensive measurement program. One of these sites, Gammtratten, situated in central Västerbotten, monitors several variables (Table 4, #3.2). SGU conducts groundwater sampling at 3 of the sites. In total, 18 stations are sampled 4 times per year. A program for comprehensive information on the state of forests in Europe was launched 1985 in response to acid deposition and fear of forest decline. The program was named the European ICP-Forest Program (International Co-operative Program on Assessment and Monitoring of Air Pollution Effects on Forests operating under the UNECE Convention on Long-range Transboundary Air Pollution, Table 6, #5). ICP-Forest monitors forest conditions in Europe and operates at two levels of intensity. Level I is a systematic 16 km by 16 km transnational grid having around 6 000 observation plots in Europe. Level II is comprised of around 800 sites in selected forests throughout Europe with more intense observations. The Level I measurements consist of three parts: crown condition assessment, soil condition assessment, and foliar survey. The crown condition assessment includes the degree of defoliation, discoloring, and damage visible on trees. The soil condition assessment addresses possible nutrient imbalances caused by, e.g. acid deposition. The foliar survey assesses foliar nutrient concentrations, because changes in environmental conditions may affect foliar nutrient concentrations. The Swedish contribution is made by the national forest inventory (SLU-FRM), which estimates the degree of crown defoliation and discoloring on 700 permanent plots around the country. The Swedish Forest Agency (SST) organizes the Level II observational plots. They manage a program with more than 200 permanent plots throughout Sweden, on which they estimate forest vitality (several measures), forest growth, soil chemistry, and field vegetation. Of these plots, 100 are connected to the international network, and 20 are north of 60°N. Foliage chemistry is determined on 100 plots, deposition and soil water chemistry on 50 plots, air quality on 25 plots, and climate on 14 plots. The sampling intensity varies from once in 5 years to once per hour depending

Ecosystems Environmental management Pollution sources
7. Swedish Bird Taxation (SFT) + Ottenby + Falsterbo

Bird populations are monitored as part of SEPA’s “Landscape” program. The Swedish bird census project determines, once per year, the species and number of birds at about 500 sites throughout the country (Table 4, #5.2). The Department of Zooecology, Lund University, organizes this census. Ottenby Bird Observatory on Öland is responsible for bird counting and ringing of small birds at Ottenby (Table 4, #5.3), a key location for migrating birds. From August to November the number and species of migrating birds are counted at Falsterbo in southern Sweden. The Department of Zoo-ecology, Lund University, organizes the census (Table 4, #5.4). Falsterbo is a key location for migrating birds of prey. The Swedish sea-bird inventory is taken place at about 100 sites where these birds spend their winter. Number and species are estimated in January of each year in the internationally coordinated program. The Department of Zoo-ecology, Lund University, conducts the Swedish part (Table 4, #5.5).

8. Sweden Small Mammals Screening

Census on small mammals (voles, lemmings, and shrews) are conducted twice per year at 3 sites along the mountain chain (Table 4, #2.2) and at 2 sites in the forest landscape (Table 4, #3.3). Part of the material collected is sent to the environmental sample bank at the Swedish Museum of Natural History (NRM). The Department of Ecology, Environment, and Geosciences (UmU-EMG) at Umeå University is in charge of the program and analyzes the data.

9. Sweden Metals in moose

Samples in moose (Table 4, #3.4) from Norrbotten and Jämtland counties (and 3 counties in southern Sweden) have been analyzed every autumn since 1996. The Swedish Museum of Natural History (NRM) organizes this work and stores some of the material, and the Swedish Veterinary Institute (SVA) performs chemical analyses on some of the tissues. Hunting associations organize much of the field sampling. Analyses: As, Cs, Cd, Cr, Co, Cu, Pb, Mn, Hg, Mo, Ni, Se, Sr, V, Zn. 2007 screening of organic compounds Sites: Norrbotten, Jämtland, Western Götaland, Jönköping, and Kronoberg Counties Intensity: Each autumn since 1980 (Grimsö), else from 1996

Pollution sources Ecosystems
10. Metals in Mosses

An alternative for metal deposition measurements is to analyze their abundance in mosses since metals bind strongly to cation exchange sites in them. The concentration of metals in mosses would therefore act as an index for metal deposition. It is also assumed that uptake of most water and dissolved substances comes directly from precipitation; even if it has been shown that capillary transport of dissolved metals may be substantial. A national inventory of metals in mosses takes place at 5-year intervals (Table 4, #1.11). The two-to-three last years growth is identified and collected for chemical analysis ICP-AES and ICP-MS (As, Cd, Hg) Metals are adsorbed by mosses and metal concentration in mosses are therefore seen as a proxy for metal deposition. Moss species: Pleurozium schreberi, Hylocomium splendens Analyzed metals: As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, V, Zn Sampling sites: More than 700 sites over Sweden Time period: 1/5 years, first report 1975 and last reported 2005.

Ecosystems Pollution sources
11. Sweden tree limit monitoring

The tree limit has been monitored since 1915 at some sites in the Swedish mountains. The Department of Ecology, Environment, and Geosciences (EMG) at Umeå University, and Jämtland and Dalarna county boards monitored about 300 sites along the Scandinavian mountain chain for upper elevation trees taller than 2 m (Öberg, 2007).

12. SEPA wetland inventory

At present SEPA’s program on wetlands is mainly a follow-up on wetland states, e.g. hydrological intactness and biodiversity. On the other hand, wetlands are part of the national inventory of landscape, NILS (see above). Wetland status is embraced by reporting obligations according to the EU Habitat Directive, and SEPA now uses high-resolution satellite data for operational monitoring.

13. National Inventory of Landscapes in Sweden (NILS)

The National Inventory of Landscapes in Sweden (NILS) is a sample-based, nationwide environmental monitoring program focused on biodiversity. NILS started in full scale in 2003 and is based at the Department of Forest Resources Management, SLU. The program includes all terrestrial environments in Sweden, including agricultural land, wetlands, urban environments, forests, and mountains. NILS is based on 631 permanent sampling squares of 1 km x 1 km (Fig. 4). Within each square, 12 sample plots are field surveyed and an air photo interpretation is done for the whole area. A more extensive air photo interpretation within wider squares of 5 km x 5 km is also planned. The program will have a rotation time of 5 years. Results from NILS are intended to follow up on the national environmental objectives, land use status and change, and the distribution and area of different biotopes (Table 4, #5.1). The NILS program is divided into several subinventories, i.e. the general landscape (Table 4, #5.1), the mountains (Table 4, #2.1), arable land (Table 4, #4.6), and wetlands (Table 4, #6.3).

14. Sweden - Satellite data-based estimates of clear felling (Sweden)

Swedish forestry practice includes a final clear felling after a rotation of up to about 100 years. To follow up on cutting permits, the Swedish Forest Agency (SST) annually maps all new clear felled areas, using satellite image data from the present and the previous year. This practice, carried out by a government agency, also creates a yearly nationwide database with SPOT or similar satellite image data, which has created the base for the above mentioned SACCESS national satellite data archive

15. kNN-Sweden

SLU combines the spectral information from SPOT, or similar satellite image data, with the field data information from the national forest inventory plots. The result is a nationwide raster database (pixel size 25x25 m) where each grid cell is coded with the stem volume for the major tree species categories (pine, spruce, deciduous), and tree height. The product, which is called kNN-Sweden after the algorithm used, is repeated every fifth year, starting with images from year 2000. The kNN database can be downloaded free of charge from http://skogskarta.slu.se/

16. Abisko Scientific Research Station (ANS) (ANS)

Investigations within many areas of biosciences and geosciences are carried out at the station. The emphasis of staff research is on plant ecology and meteorology. The main objectives of the ecological projects are to study the dynamics of plant populations and to identify the controlling factors at their latitudinal and altitudinal limits. The meteorological projects deal with recent climate changes in the region, and also with local variations of the microclimate in subalpine and alpine ecosystems.

Atmosphere Climate Ecosystems Environmental management
17. SLU, Faculty of Forestry, Unit for Forest Field Research, experimental forests

The Faculty of Forestry at SLU has two research stations with experimental forests, two experimental forests with permanent staff, three without permanent staff and a large number of long-term field trials. These facilities are spread over the country.

Climate Environmental management Atmosphere Ecosystems
18. International Network of Permafrost Observatories (INPO)

Coastal Module of GOOS

19. Interactions between meiofauna and mat-forming microbes at the sediment-water interface - implications for benthic-pelagic coupling in coastal systems

The project investigated small-scale biotic interactions between laminated microbial communities and meiofauna at light-exposed sediment-water boundaries of estuarine lagoons. The production and biological structure of these systems is mainly determined by complex processes at the sediment-water interface which depend on finely scaled patterns, requiring appreciation of how the biota interact within these scales. We tested whether changing light conditions and active emergence of the harpacticoid species Mesochra lilljeborgi and Tachidius discipes are mediated by the activity of benthic oxygenic and anoxygenic phototrophic microbes. Two hypotheses were tested which addresses to the question of causality between changing light conditions and active emergence of the harpacticoid copepods. (1)The harpacticoid copepods T. discipes and M. lilljeborgi will enter the bottom water during daylight when oxygenic photosynthesis of cyanobacteria and eukaryotic algae is blocked and conditions at the sediment-water interface have turned anoxic. (2)Both species will not emerge during dark exposures when transferred to sterilized sediments.

Biological effects Biology copepod microbial communities interactions Sediments Ecosystems
20. Structure and function of shallow marine coastal communities

Shallow coastal areas on the Swedish west coast are generally considered highly productive and important nursery grounds for both invertebrates and fish. Several commercial important coastal fish species utilize the abundant food resources in the shallow bays during their juvenile life history stages. In my research, trophic relationships are characterized among a guild of epibenthic fish and crustaceans in some shallow embayments along the Swedish west coast. I focus principally on the influence of physical factors (temperature, salinity, exposure, sediment type, oxygen level and habitat structure) on predator-prey dynamics which are quantified in a multi-level approach involving laboratory experiments and field sampling. My intention is to study biotic regulation of populations within the limits set by naturally occurring abiotic factors in coastal areas. The general hypothesis is that habitat structure (sediment and vegetation) in a coastal area has a decisive importance for community structure and function. The structure of the habitat influence the carrying capacity of the area and set the limits within which population size may fluctuate. Population dynamic, production and consumption of epibenthic fauna and fish has been estimated quantitatively in some shallow soft bottom bays, and energy flow models have been constructed for both a sandy habitat and an eelgrass bed. Interactions between habitat structure (sediment and vegetation) and the structure of epibenthic fauna has been evaluated in several types on coastal environments in the Skagerrak and the Kattegat. For example, changes in macrovegetation in shallow coastal areas and its effects on recruitment and population structure of associated crustaceans and fish has been investigated. Distribution of filamentous algae has been assessed by aerial photo documentation, and interactions between vegetation and fauna has been studied in laboratory experiments and field investigations. Structure of fish assemblages has been related to vegetation type in both rocky and soft bottom communities. In shallow sandy bays recruitment mechanisms in flatfish has been studied. Further, the structuring role of hypoxia on demersal fish communities has been investigated in SE Kattegat and York River, Chesapeake Bay, including studies of species structure, biomass, growth, migrations and food selection.

Biology Ecosystems