Svalbard: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Svalbard as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 61 - 80 of 154 Next
61. Satellite validation for SAGE III (contribution to VINTERSOL/SOLVE-2)

In december 2001 the SAGE III experiment was successfully launched. The NASA science team of the SAGE III experiment has announced the Koldewey-Station in Ny-Aalesund as "anchor site" for validation, especially for such parameters as optical depth, aerosol extinction profiles and ozone profiles. Because of time coincidence NASA apprechiates support for the prospected validation activities for ENVISAT. This should be also considered as contribution to the NASA accepted project "Ground based Validation of SAGE III by the NDSC Primary Station at Ny-Ålesund, Spitsbergen" for SOLVE-2.

Ozone Climate variability SAGE III Climate change Arctic satellite validation
62. Dynamics of benthic bivalve communities in polar environments

Description of parameters of the population dynamics of polar bivalve communities, first year: growth and reproductive cycle of the dominant Greenland cockles (Serripes groenlandicus)

Biological effects population dynamics Biodiversity Arctic
63. Studies of periglacial and glacial structures and permafrost conditions in ice free areas around Ny Ålesund area

Project Description: - Landform mapping of the periglacial and glacial structures using remote sensing / aerial photography and field observation - Genetic studies of ground ice using geochemical and stable isotope techniques - Studies of microbial life in extreme periglacial environment

glacial structures Mapping Geophysics microbial life Geochemistry Data management aerial photography periglacial structures Permafrost
64. Macroalgal secondary metabolites from Arctic waters

The aim of this project is to investigate natural products from polar macroalgae. As arctic waters represent an extreme habitat, formation of secondary metabolites is limited - besides other factors - by light conditions. Therefore, the influence of light, particularly different photon fluence rates and UV radiation, on secondary metabolism and on regulation of associated genes will be studied.

polar macroalgae Biological effects UV radiation Ecosystems
65. stratospheric balloon soundings

In situ measurements in the stratosphere shall be carried out by means of different balloon soundings. The main goal is the investigation of aerosols in the tropopause-region and in the stratosphere during wintertime. Because generation of aerosols strongly depends on water vapour content, also water vapour will be measured.

Atmospheric processes Pollution sources Arctic balloon soundings Atmosphere
66. Adaptation of bacteria in marine sediments to Arctic temperatures

The goal is to understand, how bacteria in Arctic sediments are adapted to low temperature and how (climatic) changes of temperature may affect the rate and pathways of carbon cycling and the balance of mineral cycles. The diversity and physiology of bacterial populations of fjord sediments on West-Spitzbergen will be studied by a combination of molecular (16S rRNA sequence analyses and in situ hybridization) and microbiological (isolation and physiology of pure cultures) approaches. The metabolic activity of these bacteria in the sea floor and the temperature regulation of the dominant mineralization processes will be analysed by experimentel techniques during the research period in Ny Ålesund. The focus will be on the enzymatic cleavage of polymeric carbohydrates, the anaerobic respiration through sulfate reduction, the reduction of iron and mangenese oxides, and the turnover of volatile fatty acids and hydrogen. Subsequently, psychrophilic bacteria are isolated from the anoxic sediments and studied in pure culture. The bacterial populations in the sediment are studied by molecular methods to analyze their diversity and metabolic activity.

Biological effects microbial life Sediments
67. Arctic islands of genetic diversity or fragments of an ancient clone

Arctic islands of genetic diversity or fragments of an ancient clone. The history and future of Dryas octopetala in a changing environment.

Biological effects Climate change
68. Optical properties, structure, and thickness of sea ice in Kongsfjorden

Study of the energy exchange between atmosphere, sea ice and ocean during freezing and melting conditions; within that, measurements of solar radiation (visible and UV) and optical properties, snow and sea ice characteristics, vertical heat and salt fluxes, oceanographic parameters.

UV radiation Geophysics Climate variability Climate remote sensing Sea ice Climate change Modelling Ice Oceanography Arctic Ice cores Atmosphere Ocean currents optical properties
69. The surface energy budget and its impact on superimposed ice formation (SEBISUP)

During the spring/summer transition, sea ice and snow properties change considerably in response to warming and the eventual reversal of temperature gradients within the snow and ice. Snow melt water percolates down towards the colder snow/ice interface, where it refreezes to form superimposed ice. On sea ice this process occurs probably longer and more intensive than on land, because throughout the summer the ice and underlying seawater is always colder than the snow. In Antarctica superimposed ice may actually form layers of some decimeters in thickness. The objective of this study is to investigate the main processes and boundary conditions for superimposed ice formation, in recognition of its importance for Antarctic sea ice, and its possible importance for Arctic sea ice in case of environmental changes due to future climate change. This will be performed by means of modeling as well as by combined measurements of the temporal evolution of snow and ice properties and the energy budget.

Snow and ice properties Sea ice Climate change Modelling Ice Ice sheets Arctic Ice cores Superimposed ice formation
70. Physiological response of growth, photosynthesis and nutrient uptake of marine macrophytes in a UV- and CO2 - enriched environment

As a result of the increasing atmospheric CO2 levels and other greenhose gases due to anthropogenic activities, global and water temperature is rising. The objectives of our project might be summarized as follows: I. To measure the activity of the enzymatic systems involved in carbon, nitrogen and phosphorus uptake (carbonic anhydrase, nitrate reductase and alkaline phosphatase) in selected macroalgae. To assess the optimal concentration of inorganic nitrogen and phosphorus for growth and photosynthesis. To study the total concentration of carbon and nitrogen metabolites in the macroalgae (proteins, total carbohydrates, and lipids) in order to define the possible existence of nutrient limitation. II. To simulate the conditions of climate change, represented as CO2 enrichment and increasing UV radiation, on the activity of carbon, nitrogen and phosphorus uptake mechanisms. III. To screen the activity of the enzymatic systems previously detailed in macroalgae from the Konjsfjord, in order to know their nutritional state.

Biological effects nutrient uptake UV radiation Climate change Macroalgae eutrophycation Ecosystems
71. Enhanced deposition of atmospheric mercury during Arctic sunrice _ International campain/intercompariosn

The general objective of the project is to increase the understanding of the Mercury Depletion Events occuring at Arctic sunrise and to quantify the input of mercury to polar ecosystems during this events.

Atmospheric processes Long-range transport
72. Biopolar investigations of physiological stress susceptibility and responses in microbes and arthropods

Seasonal ozone depletion in now occurring both in the Arctic and Antarctic, thus increasing levels of UV-B radiation reaching polar bilogical systems.

Biological effects UV radiation
73. The photochemistry of PTB compunds in Arctic ice

In the present time, we have lack of information and knowledge as far as the fate of presistent organic compounds in the Arctic environmet including ice.

UV radiation Persistent organic pollutants (POPs)
74. Transport, burial and fluxes of carbon and contaminants in Arctic lake and fjordic sediments

To distinguish between atmospheric and marine transport of contaminants to northen latitudes by comparison inventories of lake and fjordic sediments.

Contaminant transport Sediments Atmosphere
75. Detection of spatial, temporal, and spectral surface changes in the Ny-Ålesund area 79 N, Svalbard, using a low cost multispectral camera in combination with spectroradiometer measurements.

Changes in surface reflection at the arctic tundra at Ny-Ålesund, Svalbard (79 N) were monitored during the melting season 2002 using a low cost multispectral digital camera with spectral channels similar to channels 2, 3, and 4 of the Landsat Thematic Mapper satellite sensor. The camera was placed 474 m above sea level at the Zeppelin Mountain Research Station and was programmed to take an image automatically every day at solar noon. To achieve areal consistency in the images (which is necessary for mapping purposes) the images were geometrically rectified into multispectral digital orthophotos. In contrast to satellite images with high spatial resolution the orthophotos provide data with high spatial and high temporal resolution at low cost. The study area covers approximately 2 km2 and when free of snow, it mainly consists of typical high arctic tundra with patchy vegetation and bare soil in between. The spectral information in the images was used to divide the rectified images into maps representing different surface classes (including three subclasses of snow). By combining classified image data and ground measurements of surface reflectance, a model to produce daily maps of surface albedo was developed. The model takes into account that snow-albedo decreases as the snow pack ages; and that the albedo decreases very rapidly when the snow pack is shallow enough (20-30 cm) to let surface reflectance get influenced by the underlying ground. Maps representing days with no image data (due to bad weather conditions) were derived using interpolation between pixels with equal geographical coordinates. The time series of modeled albedo-maps shows that the time it takes for the albedo to get from 80% to bare ground levels varies from less than 10 days in areas near the coast or in the Ny-Ålesund settlement till more than 70 days in areas with large snow accumulations. For the entire study area the mean length of the 2002 melting period was 28.3 days with a standard deviation of 15.1 days. Finally, the duration of the snowmelt season at a location where it is measured routinely, was calculated to 23 days, which is very close to what is the average for the last two decades.

Digital camera Hydrography Mapping Geophysics Climate variability Orthophotograph Spatial trends Remote sensing Orthophoto Modelling Arctic GIS Spectral Temporal trends Ecosystems
76. Physiological adaptations of the arctic fox to high Arctic conditions

To investigate arctic foxes physiological adaptations to life at high latitudes. Resting and running metabolic rates, body weight, food intake, body core temperature, heart rate, and blood parameters were examined during different seasons and during periods of food deprivation.

Biological effects Biology Climate Arctic Ecosystems
77. Diversity and nitrogen fixation activity of cyanobacterial communities in terrestrial arctic ecosystems

Biological nitrogen fixation by cyanobacteria is a key process for productivity in terrestrial Arctic ecosystems and the activity is dependent of size and diversity of cyanobacterial populations. Changes in biodiversity after pertubations of different types of habitats simulating climatic changes or other antropogenic effects will be studied by molecular methods and correlated to variations of nitrogen fixation activity.

Biology nitrogen fixation cyanobacteria Climate change Biodiversity Arctic
78. KINGSCALM Active Layer Monitoring

Monitoring of the active layer near Ny Ålesund as part of the international monitoring scheme CALM (Circumpolar Active Layer Monitoring)

Active layer Climate variability Climate Climate change Permafrost
79. Diversity and changes on temporal and spatial scales of the cyanobacterial community in the high arctic environment of Spitsbergen, Svalbard Islands

The structure and role of the cyanobacterial communities that colonise bare soils and fix nitrogen in the arctic ecosystem will be studied. The planned activities will focus on the isolation, identification and characterisation of cyanobacteria from arctic habitats and on the changes of the cyanobacterial community along a transect from a retreating glacier front to a more stable habitat characterised by the presence of mature vegetation. For these purposes, a polyphasic approach encompassing microbiological, morphological and molecular techniques will be applied to environmental samples and isolated cultures. The obtained results will give new insights on the diversity and role of nitrogen fixing cyanobacteria in the arctic and, in more general terms, on ecosystem development under changing climatic conditions.

Biology nitrogen fixation cyanobacteria Soils Climate change Biodiversity Arctic Ecosystems
80. Estimation of gravity around Ny-Ålesund

Estimation of gravity around Ny-Ålesund

Gravity Mapping