Svalbard: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Svalbard as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 20 of 71 Next
1. Measurements of climate-influencing substances on Svalbard

National Environmental Monitoring in Sweden in the "Air" programme. The objective of the project is to follow climate-changing gases and particles and which effects they could have on the climate of earth. To understand and assess the human effect on the climate, regionally and globally, the atmospheric aerosols and greenhouse gases are monitored. The project aims follow: (i) detecting long-term trends in the carbon dioxide level, as well as trends in the amount or composition of aerosols in the background atmosphere; (ii) provide a basis to study the processes that control the aerosol life cycle from their formation through aging and transformation, until being removed from the atmosphere; (iii) provide a basis to study the processes (sources, sinks, and transport pathways) that control the level of carbon dioxide in the atmosphere; (iv) contribute to the global network of stations that perform continous measurements of atmospheric particles and trace gases to determine their effect on the earths radiation balance and interaction with clouds and climate.

Arctic Atmosphere Atmospheric processes Carbon dioxide CH4 Climate Climate change Climate variability CO2 Contaminant transport Data management Emissions Light absorption Light dispersion Long-range transport methane Particle concentrations Particle size distribution Temporal trends
2. Arctic study of trophospheric aerosol, clouds and radiation

Arctic study of trophospheric aerosol, clouds and radiation

aerosols trace gases Arctic Arctic haze Atmosphere Atmospheric processes Climate Climate change Emissions Long-range transport
3. Contaminants in Polar Regions – Dynamic Range of Contaminants in Polar Marine Ecosystems (COPOL)

The IPY-project ‘COPOL’ has a main objective of understanding the dynamic range of man-made contaminants in marine ecosystems of polar regions, in order to better predict how possible future climate change will be reflected in levels and effects at higher trophic levels. This aim will be addressed by 4 integrated work packages covering the scopes of 1) food web contaminant exposure and flux, 2) transfer to higher trophic levels and potential effects, 3) chemical analyses and screening, 4) synthesis and integration. To study the relations between climate and environmental contaminants within a project period of four years, a “location-substitutes-time”-approach will be employed. The sampling is focussed towards specific areas in the Arctic, representing different climatic conditions. Two areas that are influenced differently by different water masses are chosen; the Kongsfjord on the West-coast of Spitzbergen (79N, 12 E) and the Rijpfjord North-East of Svalbard (80N, 22 E). The main effort is concentrated in the Kongsfjord. This fjord has been identified as particularly suitable as a study site of contaminants processes, due to the remoteness of sources, and for influences of climatic changes, due to the documented relation between Atlantic water influx and the climatic index North Atlantic Oscillation (NAO). The water masses of the Rijpfjord have Arctic origin and serves as a strictly Arctic reference. Variable Atlantic water influx will not only influence abiotic contaminant exposure, but also food web structure, food quality and energy pathways, as different water masses carry different phyto- and zooplankton assemblages. This may affect the flux of contaminants through the food web to high trophic level predators such as seabirds and seals, due to altered food quality and energy pathways.

Biological effects Organochlorines Heavy metals Fish Climate variability Long-range transport Climate Contaminant transport Climate change Exposure Arctic Persistent organic pollutants (POPs) Local pollution Seabirds Food webs Ecosystems
4. Investigation of the physiological and cellular adaptation of plants to the arctic environ-ment – comparison with high alpine conditions

The objective of our work with arctic terrestrial plants and with algae is to study the range of climate adaptation as is expressed in special ultrastructure of cells and tissues, in photosynthetic metabolism, in antioxidative and sun screen compounds under a cold and reduced PAR / UV-B environment (climate different to alpine conditions). This is a comparison of ecophysiological processes already worked out mainly from high alpine plants, which live periodically under stronger cold and under different light regimes, especially higher UV-B and PAR irradiation. We want to find out, whether adaptations found in some alpine organisms occur similarly in polar forms.

Ultrastructure Biological effects UV radiation physiology stress adaptation Climate change Arctic Cold stress Ecosystems
5. ISACCO(Ionospheric Scintillations Arctic Campaign Coordinated Observations)

The polar ionosphere is sensible to the enhancement of the electromagnetic radiation and energetic particles coming from the Sun expecially around a maximum of solar activity . Some typical phenomena can occur such as, among the others, geomagnetic storms, sub-storms and ionospheric irregularities. In this frame the high latitude ionosphere may become highly turbulent showing the presence of small-scale (from centimetres to meters) structures or irregularities imbedded in the large-scale (tens of kilometers) ambient ionosphere. These irregularities produce short term phase and amplitude fluctuations in the carrier of the radio waves which pass through them. These effects are commonly called Amplitude and Phase Ionospheric Scintillations that can affect the reliability of GPS navigational systems and satellite communications. The goal of this proposal is to contribute to the understanding of the physical mechanisms responsible of the ionospheric scintillations as well as to data collecting for nowcasting/forecasting purposes at high latitude. As the scarceness of polar observations, the specific site near Ny-Ålesund is of particular experimental interest.

Mapping Geophysics Modelling Arctic Atmosphere ionospheric scintillation and TEC (Total Electron Content) monitoring.
6. Marine food webs as vector of human patogens

Marine foodwebs as vector and possibly source of viruses and bacteria patogenic to humans shall be investigated in a compartive north-south study. Effects of sewage from ships traffic and urban settlements, on animals of arctic foodwebs will be studied.

Pathways Biological effects Hydrography Fish Discharges Pollution sources Environmental management Contaminant transport Terrestrial mammals Shipping Polar bear Exposure Arctic Local pollution Seabirds Shellfish Food webs Waste Human health Human intake Marine mammals
7. Contaminants in polar fox

Arctic animals utilize periods with high food availability for feeding and lipid deposition, whereas they rely on stored lipids during unfavorable periods. Hence, many arctic inhabitants exhibit profound seasonal cycles of fattening and emaciation. In the Arctic, feeding is associated with fat deposition and contaminant accumulation. When lipids are mobilized, accumulated contaminants are released into the circulation. Consequently, blood contaminant concentrations may increase markedly and result in a redistribution of the contaminant(s) from “insensitive”, adipose tissues to sensitive organs, and increased contaminant bioavailability. Such variations complicate interpretations of pollutant toxicity, both in effect studies and in monitoring programs, and remains an important future reseach area. In the present study, we will use arctic fox (Alopex lagopus) as a model species for investigating tissue distribution and bioavailability of organochlorine contaminants (OCs) in relation to natural variations in lipid status (field study). These data will be supplemented and validated through a contamination study with blue fox (A. lagopus), where the seasonal changes in lipid status of wild fox are simulated in the laboratory. In both the field and laboratory study, possible effects of OCs on steroid hormone synthesis, and plasma levels of hormones, vitamin E and retinol will also be assessed.

Biological effects Biology Organochlorines PCBs Arctic Persistent organic pollutants (POPs) Pesticides
8. ARCTAPHID: biology and ecology of aphid populations in arctic environment.

In a context of global change, arctic ecosystems are exposed to deep modifications not only of the biology and ecology of endemic species but also of the interactions they may have with an increasing number of introduced species. This project attempts to assess in Svalbard, the impacts of global changes on aphids. These phytophagous insects are particularly relevant organisms for studies on the effects of global warming and biological invasion because 1) of their extreme sensitivity to micro- and macro- changes due to their spectacular rate of increase and phenotypic plasticity and 2) of their colonizing capacity conferred by their parthenogenetic mode of reproduction and their dispersal potential

ecology Biological effects Biology Populations adaptation Climate change life cycle invasive species Arctic Reproduction aphids Ecosystems
9. Metabolic and hormonal correlates of reproductive effort in the kittiwake

A co-operative project between France and Norway is proposed to study the physiological mechanisms (hormones and metabolic rate) involved in the regulation of parental effort (brood size) in an Arctic-breeding seabird, the kittiwake Rissa tridactyla. This project will be carried out at Kongsfjorden (Ny Ålesund, Svalbard) which constitutes one the northernmost (79° N) breeding site of the species. The main goal of this project is to understand the reasons of the very poor productivity of the species in this high-arctic area (only one chick/pair/year compared to 2-3 chicks/ pair/year in more temperate areas). To do so, we will concurrently study the metabolic cost of chick rearing and the metabolic cost of foraging. To test whether parent kittiwakes are apparently unable to rear more than one chick, we will manipulate brood size and will measure its consequences on basal metabolic rate (BMR) and foraging activity. We will experimentally manipulate the brood size by swapping chicks between nests shortly after hatching. Parent birds of the different experimental groups will be captured, weighted and a small blood sample (500 µL) will be taken for thyroid hormones. BMR will be estimated through thyroïd hormones (Chastel et al. 2003, J. Avian Biol. 34: 298-306), a method that reduces handling time imposed by the use of a respirometer, whereas activity at sea will be estimated using miniature activity recorders (Daunt et al., 2002 Mar. Ecol. Prog. Ser.245 : 239-247, Tremblay et al. 2003, J. Exp. Biol. 206: 1929-1940). Nests of the different groups (12 nests with 2 chicks and 12 nest with 1 chick) will be observed during 2 weeks after what parent birds will be recaptured, and bled again for T3 assay. On an other group of birds (N=10), we will calibrate these miniature activity recorders (N=10, weight:5 g) by observing the activities (rest, brooding, flying, etc..) of the instrumented birds in the colony. Food samples (N=12) will be collected from parent birds during capture and recapture sessions (kittiwakes spontaneously regurgitate food when handled). Breeding adults and chicks will be maked with plastic rings that allow identification from a distance.

parental effort Hormones Arctic Seabirds Metabolism Reproduction
10. Incubation behaviour and energetic strategy during reproduction in long-lived birds :

The aim of this programme was to study the physiological and behavioural adaptations to the incubation fast in the female eider. This leads to study fundamental questions about three complementary field researches described below. 1. Evolutionary and ecological approaches: energetic costs of reproduction during incubation In long-lived birds as Eider, there must be trade-offs between the energy allocated in growth and in reproduction. Therefore, individuals develop different reproductive strategies in relation with biotic and non biotic factors to maximize their fitness. Among factors tested, we will first measure the effects of animal density on female reproductive success. Additionally, we will measure, thanks to genetic tests, 1) the characteristics of eider populations (dispertion) by comparing birds originating from several islands and several locations on the same island, 2) the frequency of intra-specific nest parasitism and 3) extra-pair copulations to link these events with female behavioural decisions. To link reproductive effort with female immunocompetence, we will then perform PHA (phytohaemagglutinine) skin tests at different stages of the incubation period. Finally, we will perform clutch reductions at different stages of the incubation period in order to highlight decision rules controlling nest desertion in females. 2. Physiological and ecological approaches: parental investment in reproduction We will also focus on the implication of prolactin and corticosterone in the control of parental decision at the hatching stage. Implantation of exogenous hormones will be done on nesting birds to evaluate the respective role of these two hormones in the control of parental decisions in eiders. Parental investment in incubation can be regulated by the reproductive value of the clutch size. To further understand the mechanism underlying nest desertion, we will measure the induced-changes in prolactin and corticosterone concentrations after clutch size manipulation overall the incubating period. 3. Physiological approach: regulation of body fuel utilization during fasting The aim will be to study the mechanisms of the regulation of body fuel utilization and energy expenditure during fasting. For this purpose, the ability of eider duck to withstand long periods of starvation will be studied by measuring the variations in plasma of major substrate concentrations (as index of lipid or protein breakdown) and hormones (e.g., leptin, glucagon, corticosterone, T3, ...). The study of duck’s adaptation to extended fasts occurring at specific stages of their life might help to understand important underlying mechanisms, such as reduction in energy expenditure, long-term regulation of body fat storage and mobilization, as well as long-term control of food intake.

Biological effects Biology Arctic birds reproduction ecophysiology
11. The Effect of solar UV on lipids in the planktonic food chain of polar freshwater ponds

Plankton of shallow polar freshwater water bodies is exposed to increasing levels of ultraviolet radiation (UVR) due to the limited water depth. Daphnia (Crustacea, waterflea) and algae are common representatives of the food chain in these water bodies. Daphnia almost exclusively use lipids for energy storage, which they obtain from their food (mainly algae). Therefore, Daphnia and algae are closely linked to each other. Preliminary experiments on the UV-induced damage in phyto- and zooplankton point to lipids as one of the key players. With this application we want to identify how algae specific lipids and fatty acids (FA) are modified by UVR. The factors modifying UV-doses to the animals and their food are depth of the waterbody and DOC (absorbs UV). A pondsurvey shall provide a wide spectrum on ponds which vary in DOC and depth. Lipid analysis of Daphnia and their food of these ponds as well as physical parameters of the pond waters shall identify correlations between UV-exposure and specific fatty acids. This shall enable us to estimate the effect of solar UVR on the freshwater plankton community in polar ponds.

Biological effects UV radiation freshwater plankton Climate change Exposure Arctic Food webs Diet Ecosystems lipids

The aim is a better understanding of the impact of contemporary climatic change (posterior to Little Ice Age) on plant dynamics and the morphodynamic processes active at the glacial margins in polar environments. The selected research field is constituted of the Brøgger Peninsula, where erosion assessments will be evaluated for various processes (frost weathering, runoff, biological weathering, …).

Geology Hydrography Climate change Arctic GIS geomorphology
13. NOx and SO2 samplings - Corbel station

This technological program aims to get a better view of the Corbel site quality (78 54 N, 12 07 E, Svalbard close to Ny Alesunsd) for atmospheric chemistry. Nox and SO2 samplers are deployed on 16 places on a 4 km2 area around the Station (79°N, Svalbard), protected from snowscooters activity. The influence of Ny Alesund village is also studied. Programme 2004 April 2004 : poles installation and samplers deployment on the 16 stations; analysis will be made by CNR.

Atmospheric processes Long-range transport Climate Pollution sources Contaminant transport Climate change Emissions Arctic Local pollution Atmosphere
14. Determination of atmospheric fluxes of Radionuclides, Heavy Metals and Persistent Organic pollutants in well defined watershed, lakes and coastal marine sediments of Svalbard from the beginning of nuclear age

The 2003 field activity will be mainly dedicated to coring activity which includes: 1. the sampling of snow and ice cores from a Ny-Ålesund nearby glacier (midre Lovenbreen). 2. the collection of near coast (Kongsfjorden) and lakes sediments (maximum under pack depth 30 m). Sampling collection of ice and sediment cores will be performed using a portable, electric operated, sampling corer. The transport of all materials up to each sampling station should be performed with snowcats.

Atmospheric processes Biology Hydrography Heavy metals Radioactivity Radionuclides Arctic Persistent organic pollutants (POPs) Sediments Atmosphere Ecosystems
15. Role of organic and inorganic particles in the mobility of radionuclides in the Kongsfjord-Krossfjord system (MORAK)

The aims of the project are: - to evaluate the fluxes of radionuclides in the water column and their accumulation in the sediment, on a short-time scale; - to determine the C/N and delta13C-delta15N ratios in suspended and sedimentary matter, and test their use as tracers of origin, composition and transformation pathways of organic particles. The selected study area is the Kongsfjord-Krossfjord system, Svalbard, considered as representative test-site for studying processes occurring in Arctic fjords. The focus of the project will be on the processes occurring at the glacier-sea interface, where enhanced lithogenic and biogenic particle fluxes are reported in summer. Specific methods will be used to trace the particle sources. The rate of accumulation-resuspension processes will also be investigated from the inner fjord to the outer continental shelf.

Glaciers Hydrography Climate Sea ice Contaminant transport Radionuclides Oceanography Arctic Sediments Ocean currents
16. Phosphorus Cycling in the Cryosphere

This project will construct detailed phosphorus budgets for polar catchments occupied by glaciers and freshwater systems undergoing rapid response to climate warming. These are Midre Lovenbreen, Svalbard; Jebsen Creek, Signy Island (maritime Antarctic) and Storglaciaren, northern Sweden. The relationship between meltwater production, pathway and phosphorus liberation from glacial sediments will be examined closely. Emphasis will be given to phosphorus sorption dynamics in turbid glacial streams and their receiving waters (fjords and lakes).

Glaciers Catchment studies Phosphorus Climate change Arctic Geochemistry Ecosystems
17. Long-Term and Solar Variability effects in the Upper Atmosphere

Objective: to determine how solar activity influences temperatures, winds, electric currents and minor constituents and to allow possible anthropogenic influences to be determined. Uses primarily measurements by the ESRAD and EISCAT radars, plus ground-based and balloon-borne measurements of atmospheric electric fields and currents.

Atmospheric processes Noctilucent clouds Geophysics Climate variability Solar Proton Events Climate Climate change Modelling Emissions Arctic Atmosphere Polar mesospheric summer echoes (PMSE) Temporal trends
18. Effects of UV-B radiation on Microbial communities in Kongsfjorden

Effects of UV-B radiation on microbial communities in Kongsfjorden in relation to metal and dissolved organic matter availabillity.

Biological effects Ozone Biology UV radiation Heavy metals Environmental management Exposure Arctic Model ecosystem Ecosystems
19. Tropospheric aerosol observations by FTIR spectrometry

Study aerosol properties (size and composition) in the infrared spectral region

aerosols Arctic Atmosphere
20. Measurements of atmospheric mercury species during Arctic springtime

The major goal of the process study between April 15 and May 15, 2003 is to obtain quantified information on reaction path-ways, products and net deposition of mercury during Arctic sunrise.

Heavy metals mercury deposition Contaminant transport Emissions Arctic Geochemistry Atmosphere