Norway: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Norway as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 12 of 12
1. Measurements of climate-influencing substances on Svalbard

National Environmental Monitoring in Sweden in the "Air" programme. The objective of the project is to follow climate-changing gases and particles and which effects they could have on the climate of earth. To understand and assess the human effect on the climate, regionally and globally, the atmospheric aerosols and greenhouse gases are monitored. The project aims follow: (i) detecting long-term trends in the carbon dioxide level, as well as trends in the amount or composition of aerosols in the background atmosphere; (ii) provide a basis to study the processes that control the aerosol life cycle from their formation through aging and transformation, until being removed from the atmosphere; (iii) provide a basis to study the processes (sources, sinks, and transport pathways) that control the level of carbon dioxide in the atmosphere; (iv) contribute to the global network of stations that perform continous measurements of atmospheric particles and trace gases to determine their effect on the earths radiation balance and interaction with clouds and climate.

Arctic Atmosphere Atmospheric processes Carbon dioxide CH4 Climate Climate change Climate variability CO2 Contaminant transport Data management Emissions Light absorption Light dispersion Long-range transport methane Particle concentrations Particle size distribution Temporal trends
2. Monitoring of long range transboundary air pollution, greenhouse gases, ozone layer and natural ultraviolet radiation

The main objective is to quantify the levels of air pollution in the artctic, and to document any changes in the exposures. It includes the necessary components to address impacts on ecosystems, human health, materials and climate change. 

AMAP Arctic air Arctic haze Atmosphere Atmospheric chemistry monitoring Atmospheric processes Carbon dioxide chlorofluorocarbons (CFC) Climate heavy metals methane Montreal & Kyoto Protocols PAHs PCBs POPs total gaseous mercury total ozone UV
3. Network of voluntary marine meteorological observations

Incidental hydrometeorological observations along vessel routes. Monitoring and forecast of the surface layer atmosphere state, hydrometeorological support of safety of navigation and marine activities.

4. Millimetre wave radiometer for stratospheric trace gas measurements

A millimeter wave radiometer is started operation at the Swedish Institute of Space Physics, Kiruna, Sweden. The location of the instrument (67.8 N, 20.4 E) allows continuous observation of the evolution of ozone and ozone related trace gases in the Arctic polar stratosphere. It is designed for measurements of thermal emission lines around 204 Ghz. At this frequency observations include of ozone, chlorine monoxide, nitrous oxide, and nitric acid.

Ozone Geophysics Climate Modelling Arctic Atmosphere Temporal trends
5. Long-Term and Solar Variability effects in the Upper Atmosphere

Objective: to determine how solar activity influences temperatures, winds, electric currents and minor constituents and to allow possible anthropogenic influences to be determined. Uses primarily measurements by the ESRAD and EISCAT radars, plus ground-based and balloon-borne measurements of atmospheric electric fields and currents.

Atmospheric processes Noctilucent clouds Geophysics Climate variability Solar Proton Events Climate Climate change Modelling Emissions Arctic Atmosphere Polar mesospheric summer echoes (PMSE) Temporal trends
6. Simultaneous Measurements of Temperatures, Waves, and PSCs in the Polar Winter-Stratosphere on both Sides of the Scandinavian Mountains

Polar stratospheric clouds play a key-role in polar ozone destruction. Cold temperatures in the vortex allow formation of these clouds. Depending on the PSC-type different formation-temperatures have to be reached. Synoptic temperatures do not always fall to these formation-temperatures, but waves in the atmosphere can lead to additional cooling of several 10 K, which allows PSC-formation. Whereas the wave-activity at the ESRANGE is very high due to hilly surrounding area, the orographic wave-activity at ALOMAR is expected to be rather small. Waves with long wavelengths will be present at both stations simultaneously. Coordinated measurements of temperature and aerosols will show both the large-scale wave-part and also the locally induced wave-part. Such measurements should allow identification of the different wavelngth scales and in addition contribute to a better estimate of the importance of wave-induced clouds for PSC-formation.

PSC Atmospheric processes Ozone Climate variability Climate temperature profiles Atmosphere wave-activity
7. Stratosphere-mesosphere intercomparison of ozone profil

During the past years, atmospheric research in high latitudes has been focussed on processes causing ozone loss in the polar winter lower stratosphere1). Recent research efforts also dealt with regions up to the lower mesosphere, and studied the effects of charged particle precipitation on NO and ozone2)-5). However, the measurement techniques and hence the database for studying such processes in this altitude range are very limited. The Airborne SUbmillimeter Radiometer ASUR6),7) of the Institute of Environmental Physics of the University of Bremen has recently been equipped with a high-resolution spectrometer that will enable the retrieval of vertical profiles of ozone up to an altitude of about 65 - 70 km. Its measurement capabilities comprise also several other species of interest, especially NO. This makes the measurement technique particularly suitable for upper stratospheric/lower mesospheric studies. The lidar at ALOMAR is capable of measuring highly resolved vertical profiles of ozone up to an altitude of 60 km, thus giving the rare opportunity for intercomparison and validation studies in an altitude range reaching from the lower stratosphere to the lower mesosphere. Therefore we propose to perform simultaneous ozone measurements of the ASUR instrument with the ALOMAR lidar, supported by launches of ozone sondes.

Atmospheric processes Ozone Geophysics radiometer Climate Arctic Atmosphere lidar
8. Ground-based observations of noctilucent clouds With the shortest possible wavelength (308 nm)

Noctilucent clouds (NLC) remain a fascinating phenomenon of the upper atmosphere to study. The questions about the typical particle density and particle size distribution within a NLC are very prominent ones, to which a number of answers have been given, though some of the answers contradict each other. The parameters of particle size distributions can be derived from groundbased lidar measurements of the spectral dependence of the volume backscatter coefficient of an NLC. Such studies have been performed during a number of NLC events by e.g. the ALOMAR Rayleigh/Mie/Raman (RMR) lidar (von Cossart et al., GRL, 26, 1513, 1999). A drawback of these experiments is the wavelength limitation of the RMR lidar, the shortest wavelength of which is 355 nm. At this wavelength, the sensitivity of the lidar to particles with sizes smaller than, say, 25 nm is minimal. Because a considerable part of the entire particle population may have sizes below that threshold, a lingering question remains whether or not this drawback matters for typical NLC distributions. Using the ALOMAR ozone lidar, a measurement of the NLC volume backscatter coefficient at 308 nm becomes possible. Due to the l-4 -dependence of the backscatter coefficients, the latter are almost a factor of 2 larger at this wavelength than at 355 nm. For this reason and in order to gain a fourth wavelength to the spectral distribution, we aim at using the ozone lidar for the outlined project.

Atmospheric processes Climate NLC Arctic Atmosphere lidar
9. Physiological adaptations of the arctic fox to high Arctic conditions

To investigate arctic foxes physiological adaptations to life at high latitudes. Resting and running metabolic rates, body weight, food intake, body core temperature, heart rate, and blood parameters were examined during different seasons and during periods of food deprivation.

Biological effects Biology Climate Arctic Ecosystems
10. Monitoring of arctic foxes (Alopex lagopus) in the Kongsfjord area

To evaluate temporal variation in arctic fox numbers and their food resourses in the Kongsfjorden area. The number of foxes captured per 100 trap-days are used as an index of fox density termed "Fox Capture Index". The observations of denning activity i.e. observation of number of arctic fox litters and litter size at den are termed "Fox Den Index" as a second index of fox abundance. A third index is termed "Fox Observation Index". This index is based on both observations of adult foxes seen away from breeding dens pr 100 h field work and reports on request from scientists and local people on observations of adult foxes during summer. In addition, reports on observation of fox tracks in the study area were collected in 1990-2001 as a fourth index, which were called "Fox Track Index". The field census are conducted for 10 days starting at the end of June. All dead foxes in the area should be collected.

Biology Climate Terrestrial mammals Arctic Reproduction Ecosystems
11. CANDIDOZ (Chemical and Dynamical Influences on Decadal Ozone Change)

The main objective is to establish a scientific basis for the detection of the earliest signs of ozone recovery due to Montreal protocol and its amendments. To achieve this we will select the best long-term ozone and meteorological data sets available (by ECMWF and NCEP). Ozone data will be studied by using advanced multiple regression methods developed in this project. Meteorological data would allow to determine the dynamical changes and trends and assess their role in re-distribution of stratospheric ozone in recent decades and in order to force the Chemical Transport Models to assess the relative roles of chemistry and transport in ozone changes. Finally, the synthesis of the key objectives will improve the attribution of observed ozone changes to anthropogenic influences and to the variations in a natural atmosphere.

Atmospheric processes Ozone UV radiation Climate variability Climate Climate change Strstospheric ozone Arctic Atmosphere Temporal trends
12. Long Term Monitoring of Solar Radiation in Ny-Ålesund

Permanent monitoring of basic climate data for the purpose of better understanding the Arctic climate processes and detecting trends.

Atmospheric processes UV radiation Geophysics Climate Climate change solar radiation Arctic Atmosphere