Kristineberg Marine Research Station: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Kristineberg Marine Research Station as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 3 of 3
1. Marine food webs as vector of human patogens

Marine foodwebs as vector and possibly source of viruses and bacteria patogenic to humans shall be investigated in a compartive north-south study. Effects of sewage from ships traffic and urban settlements, on animals of arctic foodwebs will be studied.

Pathways Biological effects Hydrography Fish Discharges Pollution sources Environmental management Contaminant transport Terrestrial mammals Shipping Polar bear Exposure Arctic Local pollution Seabirds Shellfish Food webs Waste Human health Human intake Marine mammals
2. Interactions between appendicularian and copepod grazing on dinoflagellate blooms

To be completed.

Biology copepod grazing dinoflagellate blooms Food webs Diet
3. Energetics of copepods in non-steady state food conditions

Most studies of energetics in marine filter feeders have focused on animals living in steady state food conditions. However, copepods experience highly variable access to food because of food patchiness and behavioural avoidance of predators. For small copepods this is especially important since they lack the potential of energy storage, e.g. in the form of lipids. After a period of food deprivation Acartia tonsa show a compensatory increase in ingestion rate, but only temporarily and on the time scale of the gut filling time. The copepods are able to compensate for the lacking input of food. On the other hand, longer periods of starvation (6-14h) induce elevated ingestion rates that lasts longer than gut filling time. Under these circumstances other energetic factors influence the ingestion rate. Consequently, the energetics of the copepods are highly variable in a patchy food environment.

Biology ingestion rate energetics food patchiness copepods Food webs