Koldewey Station, Ny-Ålesund/Spitsbergen: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Koldewey Station, Ny-Ålesund/Spitsbergen as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 10 of 10
1. ENVISAT AO ID 130: Global study of inorganic chlorine and fluorine loading in the Earth’s atmosphere, based on correlative measurements by ENVISAT-1 and at 10 NDSC sites

The project aims at producing an ENVISAT-1 mission-long monitoring of the inorganic chlorine (Cly) and fluorine (Fy) loading in the Earth’s middle atmosphere, based on FTIR vertical column abundance measurements of the key related species HCl, ClONO2, HF and COF2 at 10 ground-based NDSC sites distributed worldwide. These Cly and Fy inventories will be completed with ClO and OClO measurements expected as Level-2 products from ENVISAT-1. The column abundances of the source gases CFC-12 and HCFC-22 will be used to place the stratospheric Cly and Fy evolution in perspective with the more complete sets of organic chlorinated and fluorinated compounds measured at the ground by the in situ networks NOAA-CMDL and AGAGE. The assimilation of the retrieved geophysical data bases will be performed through 3-D model calculations incorporating physical, chemical and transport characteristics of the global atmosphere.

Atmospheric processes Sources Ozone Climate variability NDSC Spatial trends Pollution sources Climate change Emissions Atmosphere Temporal trends satellite validation
2. ENVISAT AO - ID:158: CINAMON: Characterisation, INterpretation, Application, and Maturation of key Ozone-related ENVISAT-1 level-2 products, using correlative observations associated with the NDSC

The present project aims at the geophysical validation, from pole to pole and on the long term, of key ozone-related level-2 products (O3, NO2, BrO, OClO, and ClO) from GOMOS, MIPAS and SCIAMACHY onboard ENVISAT-1, and at a contribution to the maturation of the related level-1b-to-2 data processors. Application data processing will be used to convert level-2 data into a more suitable format for validation and scientific end-users. The respective performances of the ENVISAT data products, and their sensitivity to various relevant parameters, will be investigated from the Arctic to the Antarctic, over a variety of geophysical conditions. The impact of these performances on specific atmospheric chemistry studies will be emphasised. The pseudo-global investigations will rely on correlative studies of ENVISAT data with high-quality ground-based, in situ and balloon observations associated with the Network for the Detection of Stratospheric Change (NDSC).

Atmospheric processes Sources Ozone Climate variability NDSC Spatial trends Pollution sources Climate change Emissions Atmosphere Temporal trends satellite validation
3. ENVISAT AO - ID:126: Validation of ENVISAT-1 level-2 products related to lower atmosphere O3 and NOy chemistry by an FTIR

The project will provide a long-term, pseudo-global validation support to the ENVISAT-1 atmospheric measurements, based on mutually consistent high-quality solar and lunar observations from FTIR spectrometers operated at primary and a number of complementary NDSC stations. The validation is limited to a number of target species, most of which are primary NRT or OL level-2 products of the mission, with focus on NOy components: O3, NO2, NO, N2O, HNO3, HNO4, H2CO, CO and CH4. Synergistic use will be made of column and profile data from MIPAS, GOMOS and SCIAMACHY. The ground network will deliver mean vertical column abundances for all target species with NDSC-type quality, and height profile information for some target gases as secondary products to the PI's home institute, where the correlative analyses with the ENVISAT-1 products will be done. Asynoptic mapping tools will support the validation efforts.

Atmospheric processes Sources Ozone FTIR Mapping Climate variability NDSC Spatial trends Pollution sources Climate change Emissions Atmosphere Temporal trends satellite validation
4. SOGE: System for Observation of halogenated Greenhouse gases in Europe

SOGE is an integrated system for observation of halogenated greenhouse gases in Europe. There are two objectives: (1) To develop a new cost-effective long-term European observation system for halocarbons. The results will be in support of the Kyoto and the Montreal protocols,in assessing the compliance of European regions with the protocol requirements. In particular the observation system will be set up to: - detect trends in the concentrations of greenhouse active and ozone-destroying halocarbons; - verify reported emissions and validate emission inventories; - develop observational capacity for all halocarbons included in the Kyoto protocol (PFC, SF6) for which this is presently not yet existing; - develop a strategy for a cost-effective long-term observation system for halocarbons in Europe. (2) To predict and assess impacts of the halocarbons on the climate and on the ozone layer. This implies extensive exploitation of existing data. The impact assessment will be aimed at providing guidance for development of the Kyoto protocol and to the further development of the Montreal protocol mendments, by: - modelling impacts of halocarbons on radiative forcing and their relative importance for climate change; - modelling impacts of emissions of CFCs and HCFCs on the ozone layer.

Atmospheric processes Sources Ozone Climate variability Spatial trends Pollution sources Climate change Modelling Emissions Atmosphere Temporal trends
5. UFTIR: Time Series of Upper Free Troposphere observations from a European ground-based FTIR network

The main specific objectives of UFTIR are: (1) To revise and homogenise the analyses of available experimental data for providing consistent time series of distinct tropospheric and stratospheric abundances of the target gases using new inversion algorithms. A common strategy for retrieval and characterisation of the vertical distributions of the target gases from FTIR ground-based measurements will be established. (2) To provide quantitative trends and associated uncertainties for the target gases over about the last decade, as a function of latitude throughout Western Europe, focusing on the troposphere. (3) To integrate the data in model assessments of the evolutions of tropospheric abundances. The measured burden and changes of the tropospheric gases will be compared with 3D model simulations, in order to help developing the latter, assist in explaining potential causes for the observed changes and to assess the consistencies between the trends at the surface to the free troposphere and lowermost stratosphere, and the agreement with known evolutions of emissions. UFTIR will make the community prepared to deliver tropospheric data for validation and synergistic exploitation of new satellite experiments like ENVISAT.

Atmospheric processes Sources Ozone FTIR Climate variability Spatial trends Pollution sources Climate change Modelling Emissions Atmosphere Temporal trends profile inversions
6. BIRD satellite validation

The German Aerospace Center (DLR) Bi-spectral Infrared Detection (BIRD) small satellite is a technology demonstrator of new infrared push-broom sensors dedicated to recognition and quantitative characterisation of thermal processes on the Earth surface. BIRD was successfully piggy-back launched on October 22, 2001 with an Indian Polar Satellite Launch Vehicle (PSLV-C3) into a circular sun-synchronous orbit with an altitude of 572 km and a North - South local equator crossing time at 10:30 h. Besides cameras working in the visible and near infrared spectral range there are two cameras working in the middle infrared (MIR, 3.4 – 4.2 µm) and in the thermal spectral range (TIR, 8.5 – 9.3 µm) respectively. The objective is to validate these two cameras in cooperation with the Koldewey-Station in Ny-Ålesund. Therefore meteorological and aerological data as well as radiation measuring data will be used.

Atmospheric processes Vegetation fires Mapping Clouds Fire maps Spatial trends Forest damage Industrial hazards Hot spots Atmosphere Temporal trends Volcanic activities Vegetation changes Satellite validation

Aim of the project is to develop a cost-effective long-term European observation system for halocarbons and to predict and assess impacts of the halocarbons on the climate and on the ozone layer. Beside the routine observations within the NDSC it is planned to perform with FTIR (Fourier Transform Infrared Spectroscopy) absorption measurements of CFCs (e.g. SF6, CCl2F2, CHF2Cl) and related species on much more observation days.

Atmospheric processes SOGE Ozone FTIR Climate variability Climate NDSC Climate change Halocarbons Modelling Arctic Atmosphere Temporal trends
8. Stratospheric ozone loss determination (Match)

By launching several hundred ozonesondes and by ozone lidar measurements at many Arctic and sub-Arctic stations, one of them Ny-Ålesund, the stratospheric chemical ozone loss will be determined. The launches of all stations will be coordinated by analysis of trajectory calculations based on analysis and forecast wind fields. The aim is to get as many ozone sounding pairs as possible, each of them linked by trajectories in space and time. A statistical description of the ozone differencies given by the first and the second measurement of individual sonde pairs will yield the chemical ozone loss with spatial and time resolution. Four similar campaigns took place in the Arctic and in the mid-latitudes covering the time period of Januar to March in each of the last four winters. In the first three winters high ozone depletion rates (20 - 50 ppbv per day) were determined in some height levels within the polar vortex. In the height level of the ozone maximum an integrated ozone loss (during the winter) in the order of 60 % have been found. These are record ozone losses for the Arctic polar region. In the last winter the ozone depletion rates had been much lower due to moderate temperatures in the stratosphere.

Atmospheric processes Ozone MATCH Climate variability Stratosphere Climate Spatial trends Climate change Ozonesonde Arctic Atmosphere Temporal trends
9. Heat and mass transfer in the active layer

The active layer, the annually freezing and thawing upper ground in permafrost areas, is of pivotal importance. The moisture and heat transfer characteristics of this layer also determine the boundary layer interactions of the underlying permafrost and the atmosphere and are therefore important parameters input for geothermal or climate modeling. Finally, changes in the characteristics of the permafrost and permafrost related processes may be used as indicators of global ecological change provided the system permafrost-active layer-atmosphere is understood sufficiently well. The dynamics of permafrost soils is measured with high accuracy and high temporal resolution at our two sites close to Ny-Ålesund, Svalbard. Using these continuous data we quantify energy balance components and deduce heat transfer processes such as conductive heat flux, generation of heat from phase transitions, and migration of water vapor.

Water flux Geology Soils Geophysics Spatial trends Modelling Arctic Permafrost Temporal trends Energy flux
10. UV-A/UV-B measurements

The changes in the stratospheric ozone layer due to anthropogen emissions lead to an increasing insolation of sunlight in the UV-B range (280nm - 320nm) on ground. One of the major objects of UV-B measurements is to detect long-term trends. The most interesting areas corresponding to ozone depletion are Antarctica and more recently the region around the northern pole. In interdisciplinary cooperation the data are also basis for research in the effects of increasing UV-B doses on plankton, algae, and other organisms. Since 1998 additional measurements of UV-A radiation (320-400nm) are done.

UV-B Biological effects Ozone trend measurements UV radiation Climate Climate change Arctic Atmosphere Temporal trends UV-a