Koldewey Station, Ny-Ålesund/Spitsbergen: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Koldewey Station, Ny-Ålesund/Spitsbergen as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 20 of 60 Next
1. From Soil to Ocean: Transfer of terrigenous organic carbon from permafrost soils to the Arctic Ocean

In order to estimate the effect of rising global temperatures on organic carbon (OC) stocks in the temperature-sensitivity Arctic environment, our project aims at investigating the transfer of terrestrial OC from permafrost soils to the Arctic Ocean. Detailed compositional analyses of bulk soil and sediments along a transport trajectory combined with compound-specific isotopic (13C and 14C) analysis of selected lipid biomarkers will be used to study alteration processes of organic matter occurring in the soil and its during transport. Sub-goals include to a) identify suitable biomarkers for soil organic carbon in permafrost soils, b) determine residence times of selected biomarkers in permafrost soils, fluvial and marine sediments, and c) quantify carbon transfer from source (soil) to sink (marine sediment) and its timescale.

Pathways Soils Climate change Geochemistry Permafrost Radiocarbon dating
2. Investigation of the physiological and cellular adaptation of plants to the arctic environ-ment – comparison with high alpine conditions

The objective of our work with arctic terrestrial plants and with algae is to study the range of climate adaptation as is expressed in special ultrastructure of cells and tissues, in photosynthetic metabolism, in antioxidative and sun screen compounds under a cold and reduced PAR / UV-B environment (climate different to alpine conditions). This is a comparison of ecophysiological processes already worked out mainly from high alpine plants, which live periodically under stronger cold and under different light regimes, especially higher UV-B and PAR irradiation. We want to find out, whether adaptations found in some alpine organisms occur similarly in polar forms.

Ultrastructure Biological effects UV radiation physiology stress adaptation Climate change Arctic Cold stress Ecosystems
3. Biology of Arctic macroalgae

The effects of stratospheric ozone depletion and of global warming on the marine biosphere are still underexplored, especially in the Arctic. Seaweeds are very important primary producers but are strongly susceptible to enhanced UV radiation and elevated temperatures, especially their spores. The UV susceptibility of spores has previously been invoked to determine the depth distribution of seaweeds. Therefore, we will investigate the effect of different radiation and temperature conditions on the ultra-structure, physiology and biochemistry of spores from various brown and green algae growing in different water depths. Moreover, we will study competition between zoospores of various species of brown macroalgae in order to get an insight about biotic factors structuring seaweed communities and also to explain more clearly the present seaweed zonation pattern.

Biological effects UV radiation DNA damage seaweeds Climate change spores phlorotannins UV screening pigments Arctic fine structure

The project IOANA proposes to better understand the intimate coupling between ozone mixing ratios and particulate nitrate isotopic characteristics. Ozone Depletion Events which occur in Arctic coastal locations shortly after sunrise are a subject of interest per se (scientifically challenging for two decades) but also provide a context in which ozone mixing ratios are highly variable, enabling to characterize the dynamic of correlation and process studies with a resolution of a day. This is a first step towards the use of the isotope tool in reconstructions of the oxidative capacity of the atmosphere. This programme is a preparation of the IPY-OASIS project and propose to coodinate a set of collaborations than will be effective duing the International Polar Year.

Atmospheric processes Sources Ozone Arctic haze Long-range transport Pollution sources Climate change stable isotopes Arctic Ice cores nitrogen nitrate Atmosphere
5. ENVISAT AO ID 130: Global study of inorganic chlorine and fluorine loading in the Earth’s atmosphere, based on correlative measurements by ENVISAT-1 and at 10 NDSC sites

The project aims at producing an ENVISAT-1 mission-long monitoring of the inorganic chlorine (Cly) and fluorine (Fy) loading in the Earth’s middle atmosphere, based on FTIR vertical column abundance measurements of the key related species HCl, ClONO2, HF and COF2 at 10 ground-based NDSC sites distributed worldwide. These Cly and Fy inventories will be completed with ClO and OClO measurements expected as Level-2 products from ENVISAT-1. The column abundances of the source gases CFC-12 and HCFC-22 will be used to place the stratospheric Cly and Fy evolution in perspective with the more complete sets of organic chlorinated and fluorinated compounds measured at the ground by the in situ networks NOAA-CMDL and AGAGE. The assimilation of the retrieved geophysical data bases will be performed through 3-D model calculations incorporating physical, chemical and transport characteristics of the global atmosphere.

Atmospheric processes Sources Ozone Climate variability NDSC Spatial trends Pollution sources Climate change Emissions Atmosphere Temporal trends satellite validation
6. ENVISAT AO - ID:158: CINAMON: Characterisation, INterpretation, Application, and Maturation of key Ozone-related ENVISAT-1 level-2 products, using correlative observations associated with the NDSC

The present project aims at the geophysical validation, from pole to pole and on the long term, of key ozone-related level-2 products (O3, NO2, BrO, OClO, and ClO) from GOMOS, MIPAS and SCIAMACHY onboard ENVISAT-1, and at a contribution to the maturation of the related level-1b-to-2 data processors. Application data processing will be used to convert level-2 data into a more suitable format for validation and scientific end-users. The respective performances of the ENVISAT data products, and their sensitivity to various relevant parameters, will be investigated from the Arctic to the Antarctic, over a variety of geophysical conditions. The impact of these performances on specific atmospheric chemistry studies will be emphasised. The pseudo-global investigations will rely on correlative studies of ENVISAT data with high-quality ground-based, in situ and balloon observations associated with the Network for the Detection of Stratospheric Change (NDSC).

Atmospheric processes Sources Ozone Climate variability NDSC Spatial trends Pollution sources Climate change Emissions Atmosphere Temporal trends satellite validation
7. ENVISAT AO - ID:126: Validation of ENVISAT-1 level-2 products related to lower atmosphere O3 and NOy chemistry by an FTIR

The project will provide a long-term, pseudo-global validation support to the ENVISAT-1 atmospheric measurements, based on mutually consistent high-quality solar and lunar observations from FTIR spectrometers operated at primary and a number of complementary NDSC stations. The validation is limited to a number of target species, most of which are primary NRT or OL level-2 products of the mission, with focus on NOy components: O3, NO2, NO, N2O, HNO3, HNO4, H2CO, CO and CH4. Synergistic use will be made of column and profile data from MIPAS, GOMOS and SCIAMACHY. The ground network will deliver mean vertical column abundances for all target species with NDSC-type quality, and height profile information for some target gases as secondary products to the PI's home institute, where the correlative analyses with the ENVISAT-1 products will be done. Asynoptic mapping tools will support the validation efforts.

Atmospheric processes Sources Ozone FTIR Mapping Climate variability NDSC Spatial trends Pollution sources Climate change Emissions Atmosphere Temporal trends satellite validation
8. SOGE: System for Observation of halogenated Greenhouse gases in Europe

SOGE is an integrated system for observation of halogenated greenhouse gases in Europe. There are two objectives: (1) To develop a new cost-effective long-term European observation system for halocarbons. The results will be in support of the Kyoto and the Montreal protocols,in assessing the compliance of European regions with the protocol requirements. In particular the observation system will be set up to: - detect trends in the concentrations of greenhouse active and ozone-destroying halocarbons; - verify reported emissions and validate emission inventories; - develop observational capacity for all halocarbons included in the Kyoto protocol (PFC, SF6) for which this is presently not yet existing; - develop a strategy for a cost-effective long-term observation system for halocarbons in Europe. (2) To predict and assess impacts of the halocarbons on the climate and on the ozone layer. This implies extensive exploitation of existing data. The impact assessment will be aimed at providing guidance for development of the Kyoto protocol and to the further development of the Montreal protocol mendments, by: - modelling impacts of halocarbons on radiative forcing and their relative importance for climate change; - modelling impacts of emissions of CFCs and HCFCs on the ozone layer.

Atmospheric processes Sources Ozone Climate variability Spatial trends Pollution sources Climate change Modelling Emissions Atmosphere Temporal trends
9. UFTIR: Time Series of Upper Free Troposphere observations from a European ground-based FTIR network

The main specific objectives of UFTIR are: (1) To revise and homogenise the analyses of available experimental data for providing consistent time series of distinct tropospheric and stratospheric abundances of the target gases using new inversion algorithms. A common strategy for retrieval and characterisation of the vertical distributions of the target gases from FTIR ground-based measurements will be established. (2) To provide quantitative trends and associated uncertainties for the target gases over about the last decade, as a function of latitude throughout Western Europe, focusing on the troposphere. (3) To integrate the data in model assessments of the evolutions of tropospheric abundances. The measured burden and changes of the tropospheric gases will be compared with 3D model simulations, in order to help developing the latter, assist in explaining potential causes for the observed changes and to assess the consistencies between the trends at the surface to the free troposphere and lowermost stratosphere, and the agreement with known evolutions of emissions. UFTIR will make the community prepared to deliver tropospheric data for validation and synergistic exploitation of new satellite experiments like ENVISAT.

Atmospheric processes Sources Ozone FTIR Climate variability Spatial trends Pollution sources Climate change Modelling Emissions Atmosphere Temporal trends profile inversions
10. Tropospheric aerosol observations by FTIR spectrometry

Study aerosol properties (size and composition) in the infrared spectral region

aerosols Arctic Atmosphere
11. GPS-high-rate-receiver

A high precise GPS-receiver with high time resolution is operated together with the Norwegian Mapping Authority in Ny Ålesund since 1999. Datasets are transmitted continuously and automatically via Internet to the GFZ in Potsdam where they are evaluated for two purposes. Firstly to determine station coordinates, ephemerides for all GPS-satellites and high temporal resolved vertical integrated water vapor for the International GPS Service (IGS). Secondly they are used as reference for the CHAMP-satellite to determine its exact orbit and to calculate water vapor profiles from on board GPS-receiver-data.

12. Quantitative Understanding of Ozone losses by Bipolar Investigations (QUOBI)

By launching several hundred ozonesondes at many Arctic and sub-Arctic stations, one of them Ny-Ålesund, the stratospheric chemical ozone loss will be determined. The launches of all stations will be coordinated by analysis of trajectory calculations based on analysis and forecast wind fields. The aim is to get as many ozone sounding pairs as possible, each of them linked by trajectories in space and time. A statistical description of the ozone differences given by the first and the second measurement of individual sonde pairs will yield the chemical ozone loss with spatial and time resolution.

13. CHAMP Satellite receiver

CHAMP (CHAllenging Minisatellite Payload) is a German small satellite mission for geoscientific and atmospheric research and applications, managed by GFZ. With its highly precise, multifunctional and complementary payload elements (magnetometer, accelerometer, star sensor, GPS receiver, laser retro reflector, ion drift meter) and its orbit characteristics (near polar,low altitude, long duration) CHAMP will generate for the first time simultaneously highly precise gravity and magnetic field measurements over a 5 years period. This will allow to detect besides the spatial variations of both fields also their variability with time. The CHAMP mission will open a new era in geopotential research and will become a significant contributor to the Decade of Geopotentials.

magnetosphere Geophysics GIS
14. Measurements of atmospheric mercury species during Arctic springtime

The major goal of the process study between April 15 and May 15, 2003 is to obtain quantified information on reaction path-ways, products and net deposition of mercury during Arctic sunrise.

Heavy metals mercury deposition Contaminant transport Emissions Arctic Geochemistry Atmosphere
15. Taxonomic und ecologic investigations on distinct polychaetes and meiofauna-species of svalbard

In the late seventies, ELLIOTT and KINGSTON (1987) discovered a polychaetous annelid in various North Sea estuaries that had previously been found only in North American estuaries. Further specimens of what appeared to be the same species were found in the mid-eighties in the coastal waters of the Baltic Sea (BICK and BURCKHARDT, 1989). The distribution of these events in time and space led to the assumption that a North American species had immigrated to the North Sea and then extended its range of distribution to the Baltic. Within several years this species became one of the most dominant species in these estuaries. Identification of the immigrant was beset with problems from the start. It was identified as M. wireni AUGENER, 1913 or as M. viridis (VERRILL, 1873). It was the population genetic studies by BASTROP et al. (1995) and ROEHNER et al. (1996a, b) that showed the presence of genetically distinct forms in the North and Baltic Sea as well as in different regions of the north eastern coast of America. The morphological studies undertaken against this background allowed a good discrimination between these species (BICK & ZETTLER, 1997). Though, all authors dealing with the two species immigrated into the European estuaries were unable to name these species. The main reasons for this uncertainty are: - species identification is difficult, because diagnostic characters vary with growth (BICK, 1995), - the geographical distribution of Marenzelleria species is far from clear, - type material no longer exists or it is in poor condition (BICK & ZETTLER, 1997). Specimens of the type species of the genus, Marenzelleria wireni, were recorded from the Arctic region, Franz-Joseph Land and Spitzbergen (WIREN, 1883 and von MARENZELLER, 1892). As mentioned above, these specimens deposited in the Zoologisches Museum Hamburg and the Swedish Museum of Natural History, Stockholm are in poor condition. As far as we know further material from these regions does not exist. In order to eliminate the taxonomic uncertainty it is necessary to investigate morphologically and genetically specimens from the type locality.

16. Satellite validation for SAGE III (contribution to VINTERSOL/SOLVE-2)

In december 2001 the SAGE III experiment was successfully launched. The NASA science team of the SAGE III experiment has announced the Koldewey-Station in Ny-Aalesund as "anchor site" for validation, especially for such parameters as optical depth, aerosol extinction profiles and ozone profiles. Because of time coincidence NASA apprechiates support for the prospected validation activities for ENVISAT. This should be also considered as contribution to the NASA accepted project "Ground based Validation of SAGE III by the NDSC Primary Station at Ny-Ålesund, Spitsbergen" for SOLVE-2.

Ozone Climate variability SAGE III Climate change Arctic satellite validation
17. Dynamics of benthic bivalve communities in polar environments

Description of parameters of the population dynamics of polar bivalve communities, first year: growth and reproductive cycle of the dominant Greenland cockles (Serripes groenlandicus)

Biological effects population dynamics Biodiversity Arctic
18. Studies of periglacial and glacial structures and permafrost conditions in ice free areas around Ny Ålesund area

Project Description: - Landform mapping of the periglacial and glacial structures using remote sensing / aerial photography and field observation - Genetic studies of ground ice using geochemical and stable isotope techniques - Studies of microbial life in extreme periglacial environment

glacial structures Mapping Geophysics microbial life Geochemistry Data management aerial photography periglacial structures Permafrost
19. Macroalgal secondary metabolites from Arctic waters

The aim of this project is to investigate natural products from polar macroalgae. As arctic waters represent an extreme habitat, formation of secondary metabolites is limited - besides other factors - by light conditions. Therefore, the influence of light, particularly different photon fluence rates and UV radiation, on secondary metabolism and on regulation of associated genes will be studied.

polar macroalgae Biological effects UV radiation Ecosystems
20. stratospheric balloon soundings

In situ measurements in the stratosphere shall be carried out by means of different balloon soundings. The main goal is the investigation of aerosols in the tropopause-region and in the stratosphere during wintertime. Because generation of aerosols strongly depends on water vapour content, also water vapour will be measured.

Atmospheric processes Pollution sources Arctic balloon soundings Atmosphere