Europe: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Europe as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 20 of 20
1. Metals in biota

National Environmental Monitoring in Sweden. Monitoring of heavy metals in fish is performed in 110 trend lakes in Sweden. Annual sampling is carried out in 32 lakes, of which seven are in AMAP area. Three fish species have been selected: Arctic char (Salvelinus alpinus), Northern pike (Esox lucius), and Perch (Perca fluviatilis). A selection of metals is analysed in prepared samples of muscle and liver tissue. Analysed metals in liver are : Al, Ag, As, Bi, Cd, Cr, Cu, Ni, Pb, Sn and Zn. In muscle samples Hg and stabile isotopes δ 15N, δ 13C are analysed.

Arctic Biological effects Contaminant transport contamination Data management Discharges Fish lakes Local pollution Mapping Spatial trends Temporal trends trace elements vertebrate
2. National Survey of Forest Soils and Vegetation


This project has been divided into two new projects: The Swedish Forest Soil Inventory and the Swedish National Forest Inventory.

The Swedish National Forest Inventory has the task of describing the state and changes in Sweden's forests. The inventory gathers basic information on forests, soils and vegetation. It includes most aspects concerning soils, for example: soil types, soil chemistry including organic matter, water conditions and content of stones and boulders. Acidification, nitrogen deposition and the contribution by soils to climate change are some of the current issues dealt with. Regularly reported variables are: forest state, injuries, and growth, logging operations, new forest stand, and environmental assessment. Invented variables on permanent sampling plots include: position in the landscape, field vegetation, site conditions, soil sampling, assesment of soil characteristics, chemical analysis of soil in O-, B-, BC- and C-horizons.

acidification Biodiversity Biological effects Contaminant transport Data management Ecosystems Environmental management forest Forest damage Geochemistry Geology GIS Long-range transport Mapping Modelling Pathways Soils Spatial trends Temporal trends vegetation
3. Metals in mosses

National Environmental Monitoring Programme in Sweden. The objective is to follow the deposition of heavy metals over Sweden by the analyses of their concentration in two selected species of moss. The selected species are: Red-stemmed Feather-moss (Pleurozium schreberi) and Mountain Fern Moss (Hylocomnium splendens). Preferred specie: Red-stemmed Feather-moss (Pleurozium schreberi). Metals adsorbed by mosses almost exclusively come from the air and metal concentration in mosses are therefore seen as a proxy for metal deposition. Analysed elements are: Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, V, Zn (2015). The moss samples are taken from over 600 stands across Sweden.

Al As Atmosphere Biological effects Cd Cr Cu Fe Hg Hylocomnium Local pollution Long-range transport Mapping Mn Mo mosses Ni Pb Pleurozium Spatial trends Temporal trends V Zn (2010)
4. Lakes; Chemistry

Annual measurements of physical, chemical, and biological variables are taken in small to medium sized, mostly minimally disturbed lakes, situated across the country. Of the 108 lakes that are part of the Trend Station Lake monitoring programme, 20 are situated in AMAP area. The main aim of the monitoring programme is to document long-term changes related to global or regional change and human-generated stressors. To complement the Trend Station Lake monitoring programme, national lake surveys provide spatial data needed to determine regional patterns, and coupled with time-series data, changes in surface water quality. The National Lake Survey (the Surveillance Stations, re-sampled stations) programme for lake water quality, started in 2007 and results in data of all Swedish lake conditions. Each year some 800 new lakes are sampled to determine chemical and physical conditions; lakes are resampled at 6 year intevals. 4824 lakes are sampled in the country during a six-year sampling cycle, with 1270 situated in AMAP area. The variables included in the Trend Station Lake monitoring programme include water chemistry, fish, phytoplankton, macrophytes, zooplankton, and benthic invertebrates, whilst the National Lake Survey is focused solely on chemical and physical parameters.

Absorban acidification Al algae Arctic As Benthos Biological effects Ca Cd conductivity Contaminant transport Cr Cu Data management Discharges Environmental management Epiphyton Eutrophication Fe Fish Food webs Hydrography K Local pollution Long-range transport Mapping Mg Mn N NH4 Ni NO2-NO2 Nutrients Pb pH phytoplankton Sediments Si Spatial trends Temperature Temporal trends TOC Total nitrogen Total phosphor V Zn zooplankton Turbidity Benthic fauna Chlorophyll Secchi depth Litoral zone Sublitoral zone Profundal zone Pelagic zone
5. FUVIRC-Finnish Ultraviolet International Research Centre

FUVIRC will serve ecosystem research, human health research and atmospheric chemistry research by providing UV monitoring data and guidance (i.e. calibration of instruments, maintenance of field test sites), research facilities (laboratories and accommodation), instruments and equipment.

Arctic Atmosphere Biodiversity Biological effects Biology Climate change Ecosystems Forest damage Geophysics Human health ozone Populations Reindeer Temporal trends UV radiation
6. LAPBIAT-Lapland Atmosphere-Biosphere facility

The main objective of the facility is to enhance the international scientific co-operation at the seven Finnish research stations and to offer a very attractive and unique place for multidisciplinary environmental and atmospheric research in the most arctic region of the European Union. Factors such as, arctic-subarctic and alpine-subalpine environment, northern populations, arctic winters with snow, changes in the Earth's electromagnetic environment due to external disturbances and exceptionally long series of observations of many ecological and atmospheric variables should interest new users.

Arctic Atmosphere Atmospheric processes Biodiversity Biological effects Biology Climate Climate change Climate variability Data management Ecosystems Emissions Environmental management Exposure Geophysics Human health Local pollution Long-range transport Modelling ozone Persistent organic pollutants (POPs) Populations Reindeer Spatial trends Temporal trends UV radiation
7. Population Biology and Monitoring of Dunlin

Studying the population biology and monitoring the population status of Dunlin. The population under study ilives in a coatal tundra area in Northern Norway.

Biodiversity Biological effects Biology Climate variability Terrestrial Birds
8. Haliclona natural products

In contrast to many other marine regions, chemical interactions between organisms in Arctic waters are little understood. This project investigates natural products and chemical interactions in the sponge genus Haliclona in temperate and polar waters. Several new secondary metabolites isolated from Haliclona show feeding deterrence and activity against bacteria and fungi, but the compound composition varies with habitat and year. That raises the question whether sponges of the genus Haliclona as a model are able to adapt to changing environmental factors such as water temperature and colonization by bacteria by varying their secondary metabolite composition.

Biological effects Climate change Biodiversity natural products Ecosystems
9. Investigation of the physiological and cellular adaptation of plants to the arctic environ-ment – comparison with high alpine conditions

The objective of our work with arctic terrestrial plants and with algae is to study the range of climate adaptation as is expressed in special ultrastructure of cells and tissues, in photosynthetic metabolism, in antioxidative and sun screen compounds under a cold and reduced PAR / UV-B environment (climate different to alpine conditions). This is a comparison of ecophysiological processes already worked out mainly from high alpine plants, which live periodically under stronger cold and under different light regimes, especially higher UV-B and PAR irradiation. We want to find out, whether adaptations found in some alpine organisms occur similarly in polar forms.

Ultrastructure Biological effects UV radiation physiology stress adaptation Climate change Arctic Cold stress Ecosystems
10. Mitigation of effects of high power sonars on marine mammals

• This proposal is to develop a reliable method for forecasting the occurrence of marine mammals based on time of year, location and oceanographic conditions. • The work will exploit components of existing NERC-funded research within the core science programmes of SMRU and SAMS. • Pre-existing data on marine mammal aggregations lead us to believe that the proposed method has a high probability of success. • The main study area will be the Sea of the Hebrides and the Minch. • Historical data on marine mammal sightings will be supported by an observational programme, including the use of acoustics and satellite and radio tags. • Simultaneous oceanographic data will be collected during the above programme, supplementing the extensive SAMS archive of time-series from this area. • A proposed operational monitoring network in the southern Minch will be adapted to add acoustic observations to the planned suite of physical and chemical sensors. • The datasets will be analysed using a variety of statistical techniques to yield a practical relationship between observables (local oceanographic conditions, season, location) and species abundance. • The validity of this relationship as an operational tool will be tested in a variety of scenarios. • The work is expected to run from the summer of 2002 to the summer of 2005.

Biological effects Fish Geophysics Marine mammals
11. The prediction of marine mammal aggregations by reference to oceanographic observables in the seas to the north and west of the Hebrides

• There is a clear need to predict the occurrence of marine mammals in order to minimise the possible harmful impact of military sonar activities, some of which have recently received extensive public media exposure. • No military or civilian method currently exists to predict the possibility of encountering marine mammals. • The proposed work will exploit components of existing NERC-funded research within the core science programmes of SAMS and SMRU to develop a predictive tool that will link marine mammal occurrence to classical oceanographic observables. • Pre-existing data on marine mammal aggregations lead us to believe that the proposed method has a high probability of success. • The main study area will be the open seas to the north and west of the Hebrides. • Existing NERC-funded SAMS cruises in this area will collect oceanographic data, supplementing remotely sensed imagery and the extensive SAMS archive of time-series from this area. • A key element in achieving the proposal objective (and in furthering NERC science objectives) will be the recruitment of SMRU observers and equipment to SAMS cruise complements so that marine mammal sightings may be linked directly to the oceanographic research programme. • Additional SMRU deployments on board vessels of opportunity will increase the density of the observational programme. • The suitability of SOSUS acoustic data as an indicator of marine mammal presence will be investigated. • The datasets will be analysed using a variety of statistical techniques to yield a practical relationship between observables (local oceanographic conditions, season, location) and species abundance. • The value of the relationship as an operational tool will be tested in a variety of scenarios. • The work is expected to run from the summer of 2002 to the summer of 2005.

Biological effects Fish Geophysics Marine mammals
12. The Effects of Turbidity on Marine Fishes

(a) To assemble and further develop an integrative methodology for in situ evaluation of the effects of turbidity and hypoxia on fish physiological and/or behavioural performance. (b) To determine experimentally the threshold values beyond which oxygen and turbidity levels are liable to alter fish physiological and/or behavioural performance. (c) To integrate the results obtained in a conceptual and predictive model. Main expected achievements: [1] establishment of a link between laboratory studies, studies in mesocosms and field studies, using the most advanced techniques for monitoring behaviour in various environmental conditions. [2] an understanding of the impact of water turbidity and oxygenation on three major components of the behavioural repertoire of fish: habitat selection, predator-prey interactions and schooling-aggregation. [3] Predictive ability for the effect of the environmental variables studied on ecologically relevant behaviour.

Shelf seas Biological effects Fish Environmental management Local pollution Food webs
13. Digestive enzymes from marine invertebrates: Ecophysiological relevance - biotechnological application

Marine invertebrates have highly active digestive enzymes which can exhibit extraordinary catalytical properties with respect to specificity, turnover performance and thermal stabilty. Highly specific bio-active substances are important for various biotechnological applications. The project is aimed to investigate the catalytic properties of digestive enzymes in marine invertebrates from a wide geographical and thus ecological range. Target species will be preferably crustaceans and echinoderms.

Biological effects Enzymes Proteins
14. Detection of UV-B induced DNA damage

Detection of UV-B induced DNA damage on zoospores of brown algae

Biological effects Biology UV radiation CPD Temporal trends Ecosystems
15. Recruitment on hard bottom

Observation how UV-radiation affects recruitment on hard substrate in the upper sublitoral zone.

Shelf seas Biological effects Biology marine algae UV radiation Climate change Exposure Biodiversity Reproduction Temporal trends Ecosystems seaweeds
16. Development of monitoring guidelines and modelling tools for environmental effects from Mediterranean aquaculture (MERAMED)

1. To undertake a review of procedures used in the regulation and monitoring of marine cage fish farms in Norway, Scotland and elsewhere to be used as the basis for creating an appropriate set of protocols, monitoring systems and techniques for the control of such farms in Mediterranean conditions 2. To carry out a field research programme to provide appropriate data on the environmental impact of marine cage fish farms in a range of conditions in the eastern Mediterranean. 3. To develop a predictive model to simulate the environmental response at Mediterranean sea cage farms to differing cage stocking levels and feeding regimes. This will be designed as a management tool for both the industry and regulatory authorities.

Biological effects Sources Aquaculture Mapping Discharges Pollution sources Environmental management Contaminant transport Modelling Local pollution Sediments Ecosystems
17. UK Marine environmental change network

1. Establish a network to measure environmental change in marine waters by undertaking long-term research and monitoring 2. Maintain and enhance existing long-term research programmes 3. Restart important discontinued long-term research programmes 4. Develop a quality controlled database of long-term marine data series 5. Deliver and interpret long-term and broad scale contextual information to inform water quality monitoring 6. Demonstrate the benefits of preserving and networking long-term time series programmes

Biological effects Mapping Climate variability Environmental management Climate change Modelling Biodiversity Data management
18. Oceanographic Applications to Eutrophication in Regions of Restricted Exchange (OAERRE)

1. Observations of the physics of vertical and open boundary exchange in Regions of Restricted Exchanges (REEs), leading to improved parameterisation of these processes in research and simplified models. 2. Study of the phytoplankton and pelagic micro-heterotrophs responsible for production and decomposition of organic material, and of sedimentation, benthic processes and benthic-pelagic coupling, in RREs, with the results expressed as basin-scale parameters. 3. Construction of closed budgets and coupled physical-biological research models for nutrient (especially nitrogen) and organic carbon cycling in RREs, allowing tests of hypotheses about biogeochemistry, water quality and the balance of organisms. 4. Construction of simplified 'screening' models for the definition, assessment and prediction of eutrophication, involving collaboration with 'end-users', and the use of these models to analyse the costs and benefits of amelioration scenarios.

Pathways Biological effects Sources Catchment studies Spatial trends Pollution sources Environmental management Contaminant transport Local pollution Sediments Temporal trends Ecosystems Eutrophication
19. BIOFiltration & AQuaculture: an evaluation of hard substrate deployment performance with mariculture developments

1. To quantify the effectiveness of the biofilters in reducing the impacts of mariculture across Europe from both an economic and environmental perspective. 2. To determine the best design and placements of the biofilters, accounting for differences in geography, hydrology, nutrient input etc. between countries. 3. To examine the environmental and regulatory options governing the use of the biofilters at the end of their life-span and to provide detailed economic analyses of biofilter use compared to existing filtration methods.

Biological effects Fish Discharges Pollution sources Environmental management Contaminant transport Modelling Local pollution Food webs Sediments Diet Ecosystems
20. Correlation between algal presence in water and toxin presence in shellfish

1. Analysis of existing data from the current shellfish monitoring programmes in order to design a suitable sampling strategy 2. Ideentification of toxic algal species in UK waters 3. Construction of a detailed time-series at several key sites in the UK for toxic phytoplankton and shellfish toxin occurence 4. Comparison of the genotype versus toxicity of suspected toxic species between sites

Pathways Biological effects Algal Biology Fish Contaminant transport Exposure Food webs Ecosystems Human intake