Espeland Marine Biological Station: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Espeland Marine Biological Station as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 4 of 4
1. Biological responses to CO2-related changes in seawater carbonate chemistry during a bloom of Emiliania huxleyi

Large-scale changes in surface ocean chemical equilibira and elemental cycling have occurred in the fremework of "global change" and are expected to continue and intensify in the future. The progressive increase in atmospheric CO2 affects the marinebiospehere in varous ways: indeirectly, for instance, through rising mean global temperatures causing incereased surface ocean stratification and hence mixed layer insulation, and directly through changes in seawater carbonate chemistry. In lab experimetns we recently observed that CO2-related changes in seawater carbonate chemistry strongly affect calcification of marine coccolithophorids. A rise in atmospheric CO2 may slow down biogenic calcification in the surface ocean with likeley effects on the vertical transport of calcium carbonate to the deep sea. The lab findings will be tested with natural phytoplankton in semi-controlled conditions in a series of floating mesocosms.

Biological effects Climate change Geochemistry
2. Plankton responses to turbulence in a gradient of nutrient concentrations

This study will be part of the EU project NTAP. The overall objective of NTAP is to provide a unified conceptual framework for nutrient dynamics as modulated by the interaction of turbulence and plankton and to use this information to aid in implementing and modifying legislation on coastal water quality and management. Specifically, the objectives are a) to build a database on turbulence effects by gathering existing scattered data, b) to produce experimental data on key organisms, interactions and mass transfer rates, c) to develop a sensor for laboratory measurement of small-scale turbulence, and d) to produce a dynamical model at community level with exploratory and predictive capabilities. The present project will fit within Objective b), and will complement other NTAP experimental studies with cultures and natural communities that are being carried out in different European laboratories. The results derived from this project will also be valuable to test and calibrate the model developed within Objective d).

Biology Modelling Oceanography Food webs
3. Production, fate and effects of new DOM in a coastal ecosystem

Four-week mesocosm study with the following objectives: - to identify environmental and biotic factors in control of the production, chemistry and fate of exportable DOM in a coastal environment - to follow how DIN and DIP are transformed to DON and DOP and to measure their mineralisation - to analyse the optical properties of new DOM and to measure how radiation might change the optical properties - to validate current community-nutrient models for the marine system with particular emphasis on the mechanisms regulating shifts between carbon- and mineral nutrient limitation of bacterial growth rates, - to produce experimental data for further development and modification of the plankton community-nutrient model and – to incorporate DON and DOP into the present community-nutrient model.

Biology Modelling Geochemistry Food webs Ecosystems
4. Chemical and microbial ecology of boreal Demosponges from the Korsfjord

Many marine sponges produce and store pharmacologically-active metabolites. There is an ongoing discussion as to whether some of these compounds are produced by the sponge itself, or by associated bacteria which can account for more than 60% of the sponge biomass. Co-metabolic activity between sponge cells and sponge associated bacteria (SAB) has also been postulated. Anaerobic bacteria are occasionally found in sponge tissue, though their contribution to sponge metabolism is completely unknown. There is increasing interest in biotechnological production of sponge biomass for sustainable use of this promising marine resource. Our studies will contribute to a thorough understanding of sponge-bacteria interaction, and form the basis for the development of biotechnological methods. Most research has been done on tropical and subtropical sponges. Participants of this project will apply, for the first time, microbiological and chemical studies on boreal sponges. Objectives: • Description of chemical conditions in sponge tissue: occurrence of microniches • Cultivation of specific groups of aerobic and anaerobic sponge associated bacteria • Establishment of novel methods for co-cultivation of sponge cells and bacteria • Identification of new bacterial biomarkers • Elucidation of connections between spatial distribution of associated bacteria and metabolites with a focus on anoxic zones and anaerobic microbial communities (especially sulfate reducing bacteria and Archaea) • Investigation of chemical communication and other interactions (´bacterial farming´) between sponge cells and bacteria as well as sponges and their environment

Biology Biodiversity