Chukchi Sea: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Chukchi Sea as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 18 of 18
1. Alaska Fisheries Science Center surveys

The Alaska Fisheries Science Center (AFSC), under NOAA’s National Marine Fisheries Service (NMFS) is responsible for the development and implementa¬tion of NOAA’s scientific research on living marine resources in Alaskan waters. Research addresses more than 250 fish and 42 marine mammal stocks dis¬tributed on the US continental shelf and in adjacent pelagic waters. Twenty-seven commercially-important fish and crab stocks are assessed annually. The study of the effects of climate change on marine resources evidenced by loss of sea ice and ocean acidification in the Bering and Chukchi seas is a key research area. The AFSC leads a suite of fisheries research and assessment cruises in the Gulf of Alaska, Aleutian Islands and Bering Sea, which include: 1. Annual eastern Bering Sea shelf bottom trawl survey 2. Biennial (even number years) survey, eastern Bering Sea 3. Biennial (even number years) bottom trawl survey, Aleutian Islands 4. Biennial (even number years) summer Pollock survey, eastern Bering Sea shelf 5. Annual winter Aleutian basin Pollock survey 6. Annual winter Shumagin Islands Sanak Trough Pollock survey 7. Annual winter Shelikof Strait Pollock survey 8. Annual sable fish longline survey 9. Bering-Aleutian Salmon International Survey extended to the Chukchi Sea and the Eastern Bering Sea Shelf (BASIS).BASIS is a gridded fisheries oceanography survey that includes CTD and NPZ observations in addition to catches from epipelagic (0-20m) trawls. The AFSC is expanding marine fish survey effort in the Arctic Ocean, including: 1. Beaufort Sea Marine Fish Survey planned for August 2008, a cooperative project of NOAA, UA, UW and MMS (providing funding); 2. Inter-tidal and sub-tidal Marine Fish and Habitat (“ShoreZone”) Surveys near Point Barrow (Beaufort and Chukchi Seas) in 2006 and 2008; and 3. Chukchi Sea Marine Fish Survey, an extension of BASIS possible for August 2008, contingent on NOAA ship availability.

Fish Oceanography
2. NASA Ice monitoring

NASA satellites (Figure 13) and numerous instruments provide high accuracy, stable, circum-Arctic measurements for ocean and sea ice observing, including surface vector winds over the ice-free ocean, sea surface temperature, marine phytoplankton and sea ice temperature. The NASA satellites and ocean and sea ice data sets include: 1. Passive microwave time series of sea ice extent begin in 1978 and are archived at NSIDC. 2. The major Synthetic Aperture Radar (SAR) time series is from the Canadian RADARSAT satellite launched in 1995. RADARSAT data of the Arctic Ocean are processed by the RGPS (RADARSAT Geophysical Processing System, yielding high-resolution charts of ice motion, age/thickness and deformation. All RGPS data are archived at the NASA-supported Alaska Satellite Facility (ASF), University of Alaska Fairbanks. 3. GRACE is a joint NASA/German mission that measures the changes in gravity associated with the changing mass of the ocean, land, and ice sheets. In experimental measurements, GRACE has measured the changes of mass associated with the shift of ocean currents in the Arctic Ocean. 4. The ICESat satellite is in a high latitude orbit (86°N) and can determine the free surface height of the Arctic Ocean up to that latitude. These laser measurements can be used to determine the geostrophic flow. ICESat also measures the height of the snow/air interface of the sea ice, which can be used to estimate sea ice thickness when combined with other data, e.g., snowfall and ice motion, or radar altimeter measurements of the sea ice freeboard. 5. Sea surface temperature (SST) and ice surface temperature (IST) are measured by NASA with the MODIS instrument aboard the Aqua and Terra satellites. The AMSR-E instrument on Aqua measures all-weather sea surface temperature. The follow-on instrument to MODIS is the Visible Infrared Imaging Radiometer Suite (VIIRS), scheduled for launch in 2010 on NPP (NPOESS Preparatory Project). The NPP follow-on satellite is the NPOESS (National Polar-orbiting Environmental Satellite System) series beginning in 2013. 6. Satellite-derived ocean color is used in combina-tion with environmental data to provide primary productivity. NASA currently provides ocean color from observations taken by the MODIS instrument on Aqua. Under present plans, the MODIS replacement is VIIRS on the NPP and NPOESS satellites. Because VIIRS on NPP is not expected to yield the same high quality of ocean color measurements as MODIS, there may be a gap in the high accuracy of these measurements.

Sea ice Oceanography
3. USGS Benchmark Glaciers

USGS operates a long-term “benchmark” glacier program to monitor climate, glacier geometry, glacier mass balance, glacier motion and stream runoff.

4. National Streamflow Information Program (NSIP) (NSIP)

The mission of the NSIP is to provide the streamflow information and understanding required to meet local, State, regional and national needs. For additional information about USGS water resources programs and data, go to: • Program Description: • Contact: Steven Frenzel, • Surface water data availability: • Water quality data availability: • Groundwater data availability: Main gaps: Extremely sparse coverage in Alaska in general.

5. Application of High-Frequency Radar to Potential Hydrocarbon Development Areas in the Northeast Chukchi Sea: Physical Oceanography of the Chukchi Sea OCS

Understanding the physical oceanography of the northeast Chukchi Sea through the collection of real time High Frequency Radar (HFR) surface current measurements from shore-based systems, deployment of sub-surface Acoustic Doppler Current Profilers (ADCP), and the use of Automated Underwater Vehicles (AUV). Providing oceanographic data sets for guiding the development and evaluation of ocean circulation, wave and oil spill trajectory models.

6. Beaufort and Chukchi Seas Mesoscale Meteorology Model

1. Produce a geospatial surface meteorological database for the Beaufort and Chukchi Seas and the adjacent coastal areas by collecting available conventional and unconventional surface and atmospheric data and conducting field work; 2. Establish a well-tuned Beaufort/Chukchi seas mesoscale meteorology model through further modeling studies for the optimization and improvement of the model physics and configuration; 3. Conduct a long-term hindcast simulation with the optimized data-modeling system and produce a high resolution meteorological dataset for the Beaufort and Chukchi regions; and 4. Document the high-resolution climatological features of the Beaufort/Chukchi seas’ surface winds, including an analysis of the interannual variability and long-term

7. Submarine Operational And Research Environmental Database (SOARED)

The Submarine Operational And Research Environmental Database (SOARED)is comprised of a fixed relational environmental database using unclassified data collected during the Science Ice Exercises (SCICEX) during the past several years. It also includes publicly accessible gridded historical sound velocity, temperature and salinity data from 1900 from the US National Oceanographic Data Center. This project is a demonstration system to show ways to retrieve and analyze sound velocity, temperature and salinity profiles, bathymetry and ice thickness data using a mouse-driven GIS-based query.

Shelf seas Hydrography Mapping Spatial trends Sea ice Climate change Ice Oceanography Arctic GIS Data management Ocean currents Temporal trends
8. Climate and contamination of the western arctic: monitoring change with the Black Guillemot, an apex marine predator

Examine temporal and spatial variation in trace metal concentrations in the western Arctic through the analysis of Black Guillemot feathers. Temporal trends being examined using study skins collected as early as 1897. Spatial variation examined in conjunction with carbon isotope signatures in feathers and by sampling both winter and summer plumages. Regional climate change monitored through examination of annual variation in breeding chronology and success in relation to snow and ice melt.

Heavy metals Climate variability Spatial trends Climate change Ice Arctic Persistent organic pollutants (POPs) Seabirds Temporal trends
9. Arctic Social Science Data Center (ASDC)

A proposal has been submitted to the National Science Foundation titled: For Support of the Arctic Social Science Data Center at NSIDC, OPP-0119836.

Arctic social science Arctic Data management
10. Expedition of hydrographical vessel 'Nikolai Kolomeets'

The expedition by vessel 'Nikolai Kolomeets'included sampling of marine water, bottom sediments, benthos and plankton for studies of accumulation and transformation of OCs and estimation of related toxic effects on aqueous biocenoses. The marine studies took place during the period July-October 2000 in areas of the Pechora, Kara, Laptev, East-Siberian and Chukchi Seas.

Shelf seas Organochlorines PCBs plankton Long-range transport Contaminant transport marine benthos Oceanography Persistent organic pollutants (POPs) bioaccumulation Sediments
11. Concentrations and patterns of persistent organochlorine contaminants in beluga whale blubber.

White whale (Delphinapterus leucas) blubber samples from three of the five different Alaskan stocks - Cook Inlet (n = 20), Eastern Chukchi Sea (n = 19) and Eastern Beaufort Sea (n = 2) - were analyzed for levels and patterns of chemical contaminants. Blubber of these whales contained sum PCBs, sum DDTs, sum chlordanes, HCB, dieldrin, mirex, *toxaphene and *HCH, generally in concentration ranges similar to those found in white whales from the Canadian Arctic and lower than those in white whales from the highly contaminated St. Lawrence River. The males of the Cook Inlet and Eastern Chukchi Sea stocks had higher mean concentrations of all contaminant groups than did the females of the same stock, a result attributable to the transfer of these organochlorine contaminants (OCs) from the mother to the calf during pregnancy and during lactation following birth. Principal components analysis of patterns of contaminants present in blubber showed that Cook Inlet stock appeared to have identifiable contaminant patterns that allowed the stock to be distinguished from the others. Our results also showed that blubber from the three Alaskan stocks was a source of contaminant exposure for human subsistence consumers, but the health risks from consumption are currently unknown.

Organochlorines white whale PCBs pollutants pollutant burden Arctic monitoring Persistent organic pollutants (POPs) Reproduction Pesticides Human intake Marine mammals
12. Organochlorine contaminants in blubber of Ringed Seals: Integrating biomonitoring and specimen banking

Blubber samples from Alaska ringed seal (Phoca hispida) were collected for inclusion in the US National Biomonitoring Specimen Bank, as well as for immediate analysis as part of the contaminant monitoring component of the US National Marine Fisheries Service's Marine Mammal Health and Stranding Response Program. The blubber samples were analyzed for organochlorine (OC) contaminants (e.g., PCB congeners, pesticides, DDTs). Results for ringed seals from the Alaska Arctic revealed low blubber concentrations of OC contaminants. Differences in contaminant concentrations among the Alaska seals may be explained by differences in feeding habits and migratory patterns; age or gender did not appear to account for the differences observed. The integration of real-time contaminant monitoring with specimen banking provides important baseline data that can be used to plan and manage banking activities. This includes identifying appropriate specimens that are useful in assessing temporal trends and increasing the utility of the banked samples in assessing chemical contaminant accumulation and relationships to biological effects.

Organochlorines PCBs Spatial trends ringed seal Arctic Persistent organic pollutants (POPs) blubber Pesticides Marine mammals
13. Human and chemical ecology of Arctic pathways by marine pollutants

1. Research area # 2 in the 1998/99 Announcement of Opportunity by CIFAR, "Study of anthropogenic influences on the Western Arctic/Bering Sea Ecosystem", and 2. Research area #4 in the 1998/99 Announcement of Opportunity by CIFAR, "Contaminant inputs, fate and effects on the ecosystem" specifically addressing objectives a-c, except "effects." a. "Determine pathways/linkages of contaminant accumulation in species that are consumed by top predators, including humans, and determine sub-regional differences in contaminant levels..." b. "Use an ecosystems approach to determine the effects of contaminants on food web and biomagnification." c. "Encourage local community participation in planning and implementing research strategies." The objectives of Phase I, Human Ecology Research are to: 1. Document reliance by indigenous arctic marine communities in Canada, Alaska and Russia on arctic resources at risk from chemical pollutants; and, 2. Incorporate traditional knowledge systems of subsistence harvesting. The human ecology components of the project were conducted within the frameworks of indigenous environmental knowledge and community participation. Using participatory mapping techniques, semi-structured interviews and the direct participation of community members in research design, data collection and implementation, research and data collection on the human ecology of indigenous arctic marine communities was undertaken in the communities of Holman, NWT (1998), Wainwright, Alaska (1999), and is underway in Novoe Chaplino, Russia. (2000).

Biology Organochlorines PCBs Fish Indigenous people Contaminant transport Stable isotopes Exposure Arctic Persistent organic pollutants (POPs) Food webs Ecosystems Marine mammals
14. Concentrations and interactions of selected elements in tissues of four marine mammal species harvested by Inuit hunters in arctic Alaska, with an intensive histologic assessment, emphasizing the beluga whale

The first part of the present study evaluated tissue concentrations of twelve essential and non-essential elements in four arctic marine mammal species important as subsistence resources to indigenous Alaskans. Species sampled included: bowhead whales, beluga whales, ringed seals, and polar bears. Concentrations of As, Cd, Co, Cu, Pb, Mg, Mn, Hg, Mo, Se, Ag, and Zn, were analyzed in liver, kidney, muscle, blubber, and epidermis (the latter in cetaceans only). Elements that were identified as having tissue concentrations, which in domesticated species would have been considered higher than normal and/or even toxic, were Cd, Hg, Ag, and Se. However, the concentrations of these elements were consistent with previous reports for arctic marine mammals. Remaining elements were at concentrations within normal ranges for domesticated species, although Cu was found frequently at concentrations that would be considered marginal or deficient in terrestrial domesticated animals. Across-species comparisons revealed that Cd was highest in kidney, followed by liver in all four species. Its concentrations were frequently correlated with Cu, Zn, Hg, and Se. Cadmium accumulated with age in bowhead and beluga whales, especially in liver and kidney. The relationships between Cd and Hg, and between Cd and Se were believed to be due to mutual accretion with age, although direct interactions could not be ruled out, especially with respect to Cd and Se. Associations between Cd and Cu, and Cd and Zn were potentially attributable to mutual binding with the inducible protein, metallothionein. This assumption was supported by the observation that Cd:Zn ratios in liver and kidney displayed a significant linear relationship to age and that this ratio either increased slightly (in kidney and liver of bowheads) or remained constant (in kidney and liver of belugas) with age. In general, Se was highest in liver and kidney of all four species, where it was frequently at concentrations that would have been deemed elevated or toxic for domesticated species, although within ranges previously reported for arctic marine mammals. Selenium increased with age indices, and was highly correlated with Hg, and often with Cd as well. Mercury also increased with age, and liver contained the highest tissue concentration in the cetacean and pinniped species. The pattern of Se accumulation in polar bears differed, with highest concentrations found in kidney, which suggested that this tissue may be the primary site for Hg detoxification in this species, as is the case for terrestrial mammals. Compared to the other three species, bowhead whales had very low Hg concentrations in all tissues. The highly significant linear relationship between Hg and Se noted in various tissues (particularly liver) of all four species was presumed due to binding of these two elements to each other following demethylation of MHg. This assumption was supported by the observations that while Se and Hg both accumulated with age, the fraction of total Hg that was composed of MHg decreased with age. The quantity that represented the difference between total Hg measured directly and calculated total Hg [i.e., SHg = Hg(II) + MHg], also increased with age in beluga liver. This connoted that a portion of the total Hg present was in an organic form other than MHg, and that this form accumulated with age. Alternatively, this portion, which was apparently not measured by either the Hg(II) or MHg procedures, may have been lost during extraction. Species in this study had mean hepatic Hg:Se molar ratios that were below unity. This implies that Hg concentrations may have been below some threshold level, after which subsequent accumulation proceeds in a 1:1 molar ratio fashion with Se. Alternatively, it might suggest that a 1:1 Hg:Se molar ratio is not a prerequisite for protection from Hg toxcosis among marine mammals, because none of the animals in the present study exhibited lesions typically associated with Hg toxicosis. In beluga liver, concentrations of Ag were elevated when compared to domesticated species. The only element that showed a significant linear association to Ag was Cu—a relationship that was observed in all four species. This suggested that Ag and Cu may be associated through a common ligand, possibly metallothionein. The association between Ag and Se in beluga liver was less strong than that between Hg and Se; moreover, Ag did not increase with age. These findings indicate that Ag probably does not compete with Hg for Se binding, and therefore is unlikely to substantially inhibit detoxification of Hg in beluga whales. In the second portion of this research, tissues from bowhead whales, beluga whales and ringed seals were examined at both the gross and light microscopic level. The purpose of this evaluation was three-fold: to describe the normal histologic appearance of tissues; to perform a routine histologic survey of tissues that would contribute to a general health assessment, and; to scrutinize tissues for lesions that might support a diagnosis of toxicosis caused by Cd, Hg, Ag, or Se. Tissues examined were chosen on the basis of their propensity to be targets for toxicologic injury from the specified elements (with the exception of brain) and included, but were not limited to, the tissues analyzed chemically. Special stains were used to identify particular pigments or tissue components. Overall, the bowhead whales evaluated appeared healthy and had low parasite burdens. The most common lesion, which was observed in all bowheads, was a non-inflammatory chronic renal periglomerular and interstitial fibrosis. This lesion was not typical of Cd-induced nephropathy, and it did not appear to be associated with renal Cd burdens. Nevertheless, thresholds of Cd-induced renal injury are not known for cetacean species, and more whales need to be examined histologically in conjunction with analysis of tissue Cd residues. Acute myodegeneration was observed in cardiac and/or skeletal muscle of a few bowheads, and was presumed to reflect a hunting-induced exertional myopathy. The beluga whales examined were generally in good body condition and appeared healthy grossly, but they had much higher parasite burdens than bowhead whales. In particular, prevalence in belugas of pulmonary nematodiasis was high, being especially common among whales obtained from Pt. Hope compared to those from Pt. Lay. Grossly, firm, caseous nodules were associated with lungworms, while histologically, the associated pulmonary changes ranged from mild chronic inflammation and focal granuloma formation to catarrhal granulomatous and eosinophilic verminous bronchopneumonia. Another change observed in some belugas and believed to be associated with lungworm infection, was multifocal pulmonary arterial medial hypertrophy and degeneration. Beluga whales harvested at Pt. Lay (summer) frequently showed evidence of hepatic and pancreatic atrophy, while whales taken at Pt. Hope (spring) did not. This was believed to result from anorexia during migration—a supposition corroborated by the lack of stomach contents among Pt. Lay whales. Another prominent histologic finding among belugas was hepatic telangectasia, which occurred with significantly greater frequency and severity in Pt. Hope belugas than in those from Pt. Lay. The etiology and significance of this lesion could be not be ascertained, although it was not believed to be associated with any of the elements analyzed in this study. Mild thickening of Bowman’s capsule was seen frequently in belugas. However, this lesion was not typical of Hg or Cd-induced nephropathies, and did not appear correlated with kidney concentrations of these metals. This lesion was believed to be a normal consequence of aging in belugas, although a metal etiology for it could not be excluded irrefutably. In general, ringed seals were in good body condition and appeared healthy on gross examination. Among seals evaluated histologically, the most common finding was a mild, chronic, focal or periportal hepatitis, with focal hepatocellular necrosis sometimes apparent. Although a metal etiology for this lesion could not be definitively ruled out, in the absence of other lesions that would support a diagnosis of metal toxicosis, an infectious etiology was considered more credible. Two out of sixteen seals had embryologic remnants (an epidermoid cyst and an ultimobranchial cyst)—lesions that are usually considered incidental. While no toxic (metal or otherwise) etiology could be ascertained for these lesions, the incidence of retained embryologic remnants seemed high. A number of xenobiotics are known to be endocrine-disruptors, and the potential for such an etiology among these seals should be examined further. Lipofuscin deposition was ubiquitous among all three species examined histologically. Lipofuscin was most prevalent in hepatocytes, but also commonly was observed in various other tissue and cell types, especially in cardiac and skeletal myocytes, and in uriniferous tubular epithelial cells. The third portion of this study employed autometallographic (AMG) development of light microscopic tissue sections to amplify and localize deposition of inorganic Hg in liver and kidney of beluga and bowhead whales. No staining occurred among bowhead tissues, confirming the extremely low concentration of Hg determined through chemical analyses. In beluga kidney sections, AMG granules were seen throughout the uriniferous tubular epithelium, showing that Hg deposits throughout the nephric tubule, and not solely in the proximal tubular epithelium. In liver tissue, AMG granules were deposited primarily in periportal regions among whales with lower hepatic Hg burdens. In addition to periportal deposition, AMG granules were observed in pericentral and mid-zonal regions in the belugas sampled that had higher liver Hg concentrations (generally older animals). Granules were densely concentrated in stellate macrophages, especially near portal triads. Granules also were distributed in hepatocellular cytoplasm, generally concentrated toward the bile cannalicular domain of the cell. Granules were discrete, potentially indicating that Hg was confined within lysosomes. These observations suggested that inorganic Hg deposits initially in periportal regions of young animals, with subsequent accumulation occurring pericentrally, and finally, midzonally as the whales age. Computer-assisted densitometric analysis was used for semi-quantitative evaluation of AMG staining intensities. These AMG staining intensities were well correlated with concentrations of Hg determined via chemical analysis. Areas with AMG-staining were identified and compared with location of lipofuscin in the same field, visualized with fluorescent microscopy. While AMG granules and lipofuscin deposits sometimes were co-localized, they more often were not. In addition, abundant lipofuscin deposition was seen in livers of younger belugas with little to no Hg-catalyzed AMG staining. Also, lipofuscin concentrated predominantly in pericentral regions. These observations suggested that in the healthy marine mammals of this study, marked hepatic lipofuscin deposition most often occurred independently of Hg accumulation. Consequently, hepatic lipofuscin is likely to be a poor indicator of Hg-induced damage in belugas. The abundant lipofuscin deposition in livers of marine mammals was interpreted as most likely denoting a heightened exposure to oxidative stress that is probably inherent to a marine mammalian existence. These oxidative stressors may include a diet high in polyunsaturated fatty acids (PUFAs), alternating hypoxia and abundant oxygenation, and periodic bouts of anorexia associated with migration.

histology Biological effects Heavy metals health assessment Polar bear Arctic histopathology Marine mammals
15. Radionuclide contaminant burdens in arctic marine mammals harvested during subsistence hunting

We conducted gamma spectrometric analyses on more than 200 arctic marine mammal tissue samples. These samples were primarily provided by subsistence hunters from northern Alaska, with a smaller number of samples from the Resolute region in Canada. The majority of samples (>90% ) had detectable levels of the anthropogenic radionuclide 137Cs, with a mean level observed in all samples of 0.67 Bq kg-1 dry weight ±0.81 (SD). Converted to wet weight, the mean was 0.21 Bq kg-1 ±0.19 SD. The median activity observed was 0.45 Bq kg-1 dry weight (0.18 Bq kg-1 wet weight) with a range from detection limits to 6.7 Bq kg-1dry weight (1.1 Bq kg-l wet weight). These findings confirm expectations that current anthropogenic gamma emitter burdens in marine mammals used in the North American Arctic as subsistence food resources are well below activities that would normally merit public health concern (~1000 Bq kg-1 wet weight). Some differences among species and tissues were observed. Beluga tissues had slightly higher mean burdens of 137Cs overall, and epidermis and muscle tissues in bowhead and beluga whales typically had higher burdens than other tissues analyzed. Low levels of the neutron activation product l08mAg (half-life 418 yr.), probably bioaccumulated from bomb fallout sources, were observed in 16 of 17 beluga livers analyzed, but were not found in any other tissues of beluga or in any other species sampled. A subset of 39 samples of various tissues was analyzed for the alpha and beta emitters 239,240Pu and 90Sr. Plutonium levels were near the threshold of detectability (~0.1 Bq kg-1 dry weight) in 6 of the 39 samples; all other samples had no detectable plutonium. A detectable level of 90Sr (10.3 ±1.0 Bq kg-1 dry weight) was observed in only one of the 39 samples analyzed, a bowhead epidermis sample. Although the accumulation of 108mAg has not been previously reported in any marine mammal livers, all of our analytical measurements indicate that only very low levels of anthropogenic radioactivity are associated with marine mammals harvested and consumed in the North American Arctic.

silver-108m cesium-137 Radionuclides Arctic Marine mammals
16. Trajectories of Marine Ecosystem Response to Arctic Climate Change: A Barents-Bering Sea Comparison

Multi-institutional, international cooperative project to determine the possible responses of Arctic marine communities to future global climate change by comparing retrospective patterns in benthic composition and distributions to past climatic events in the Barents and Bering Seas.

Biological effects Climate variability Spatial trends Contaminant transport Climate change Biodiversity Food webs Temporal trends Ecosystems
17. Shelf Basin Interactions Program

To understand and model the processes by which Arctic deep water is formed on continental shelves by the modification of inflowing Atlantic and Pacific waters.

Shelf seas Hydrography Modelling Ice Oceanography Arctic SEARCH Data management Atmosphere Ocean currents
18. Polar Ice Prediction System Version 3.0 (PIPS 3)

To develop the next-generation Navy operational ice thickness and movement model.

Shelf seas Hydrography Modelling Ice Oceanography Arctic SEARCH Data management Atmosphere Ocean currents