Bering Sea: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Bering Sea as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 18 of 18
1. Alaska Fisheries Science Center surveys

The Alaska Fisheries Science Center (AFSC), under NOAA’s National Marine Fisheries Service (NMFS) is responsible for the development and implementa¬tion of NOAA’s scientific research on living marine resources in Alaskan waters. Research addresses more than 250 fish and 42 marine mammal stocks dis¬tributed on the US continental shelf and in adjacent pelagic waters. Twenty-seven commercially-important fish and crab stocks are assessed annually. The study of the effects of climate change on marine resources evidenced by loss of sea ice and ocean acidification in the Bering and Chukchi seas is a key research area. The AFSC leads a suite of fisheries research and assessment cruises in the Gulf of Alaska, Aleutian Islands and Bering Sea, which include: 1. Annual eastern Bering Sea shelf bottom trawl survey 2. Biennial (even number years) survey, eastern Bering Sea 3. Biennial (even number years) bottom trawl survey, Aleutian Islands 4. Biennial (even number years) summer Pollock survey, eastern Bering Sea shelf 5. Annual winter Aleutian basin Pollock survey 6. Annual winter Shumagin Islands Sanak Trough Pollock survey 7. Annual winter Shelikof Strait Pollock survey 8. Annual sable fish longline survey 9. Bering-Aleutian Salmon International Survey extended to the Chukchi Sea and the Eastern Bering Sea Shelf (BASIS).BASIS is a gridded fisheries oceanography survey that includes CTD and NPZ observations in addition to catches from epipelagic (0-20m) trawls. The AFSC is expanding marine fish survey effort in the Arctic Ocean, including: 1. Beaufort Sea Marine Fish Survey planned for August 2008, a cooperative project of NOAA, UA, UW and MMS (providing funding); 2. Inter-tidal and sub-tidal Marine Fish and Habitat (“ShoreZone”) Surveys near Point Barrow (Beaufort and Chukchi Seas) in 2006 and 2008; and 3. Chukchi Sea Marine Fish Survey, an extension of BASIS possible for August 2008, contingent on NOAA ship availability.

Fish Oceanography
2. NASA Ice monitoring

NASA satellites (Figure 13) and numerous instruments provide high accuracy, stable, circum-Arctic measurements for ocean and sea ice observing, including surface vector winds over the ice-free ocean, sea surface temperature, marine phytoplankton and sea ice temperature. The NASA satellites and ocean and sea ice data sets include: 1. Passive microwave time series of sea ice extent begin in 1978 and are archived at NSIDC. 2. The major Synthetic Aperture Radar (SAR) time series is from the Canadian RADARSAT satellite launched in 1995. RADARSAT data of the Arctic Ocean are processed by the RGPS (RADARSAT Geophysical Processing System, yielding high-resolution charts of ice motion, age/thickness and deformation. All RGPS data are archived at the NASA-supported Alaska Satellite Facility (ASF), University of Alaska Fairbanks. 3. GRACE is a joint NASA/German mission that measures the changes in gravity associated with the changing mass of the ocean, land, and ice sheets. In experimental measurements, GRACE has measured the changes of mass associated with the shift of ocean currents in the Arctic Ocean. 4. The ICESat satellite is in a high latitude orbit (86°N) and can determine the free surface height of the Arctic Ocean up to that latitude. These laser measurements can be used to determine the geostrophic flow. ICESat also measures the height of the snow/air interface of the sea ice, which can be used to estimate sea ice thickness when combined with other data, e.g., snowfall and ice motion, or radar altimeter measurements of the sea ice freeboard. 5. Sea surface temperature (SST) and ice surface temperature (IST) are measured by NASA with the MODIS instrument aboard the Aqua and Terra satellites. The AMSR-E instrument on Aqua measures all-weather sea surface temperature. The follow-on instrument to MODIS is the Visible Infrared Imaging Radiometer Suite (VIIRS), scheduled for launch in 2010 on NPP (NPOESS Preparatory Project). The NPP follow-on satellite is the NPOESS (National Polar-orbiting Environmental Satellite System) series beginning in 2013. 6. Satellite-derived ocean color is used in combina-tion with environmental data to provide primary productivity. NASA currently provides ocean color from observations taken by the MODIS instrument on Aqua. Under present plans, the MODIS replacement is VIIRS on the NPP and NPOESS satellites. Because VIIRS on NPP is not expected to yield the same high quality of ocean color measurements as MODIS, there may be a gap in the high accuracy of these measurements.

Sea ice Oceanography
3. USCG ocean and ice monitoring

The USCG contributes to ocean and sea ice observa¬tions through a number of activities. First, USCG supports Arctic research through its icebreaking operations. Assets include three polar class icebreak¬ers, of which HEALY operates in the Arctic, POLAR SEA has recently completed drydock work, and POLAR STAR is in caretaker status pending an Administration decision on how the US can best meet polar icebreaking requirements. USCG carries out the annual International Ice Patrol (IIP). The activities of the IIP are governed by treaty and US law to encompass only those ice regions of the North Atlantic Ocean through which the major trans-Atlantic shipping lanes pass. There remain other areas of ice danger where shipping must exercise extreme caution. Information concerning ice conditions is collected primarily by air surveillance flights and from ships operating in the ice area. All iceberg data, together with ocean current and wind data, are entered into a computer model that predicts iceberg drift. Every 12 hours, the predicted iceberg locations are used to estimate the limit of all known ice. This limit, along with a few of the more critical predicted iceberg locations, is broadcast as an “Ice Bulletin” from radio stations around the US, Canada, Europe and over the Worldwide Web for the benefit of all vessels crossing the north Atlantic. In addition to the Ice Bulletin, a radio facsimile chart of the area, depicting the limits of all known ice, is broadcast twice daily. USCG has begun the Arctic Domain Awareness (ADA) program to prepare for increased maritime activity as climate changes provide greater access to the Arctic. Understanding the Arctic Maritime Do¬main is part of a DOD and DHS effort to improve Maritime Domain Awareness (MDA) by developing an effective understanding of the global maritime domain and supporting effective decision-making as outlined in the National Strategy for Maritime Security. MDA includes both environmental condi¬tions and human activities that could affect maritime safety, security, the economy or environment. As MDA is expanded to the Arctic, there are likely overlaps in resource needs and sensors that could apply to both MDA/ADA and AON, and coordina¬tion of their activities will be mutually beneficial. The IIP works closely with the National Ice Center (NIC), a multi-agency operational center operated by the US Navy, NASA, NOAA and the USCG. The NIC mission is to provide the highest quality strategic and tactical ice services tailored to meet the operational requirements of Federal agencies. The NIC also coordinates and represents the many funding agencies and partners of the US Interagency Arctic Buoy Program (IABP). NIC also funds the coordinator of the program, and NSF supports IABP data management and coordination at the University of Washington. US buoy contributions to the IABP are funded by NOAA and the Office of Naval Research (ONR). NSF supports the fabrication and deployment of drifting ice mass balance buoys by the Cold Regions Research and Engineering Laboratory (CRREL), US Army Corps of Engineers.

Sea ice Oceanography
4. Russian-American Long-term Census of the Arctic (RUSALCA) (RUSALCA)

Observe changes in the ecosystem, fluxes of heat, salt, nutrients, CO2, and methane from the seafloor to the atmosphere above, as a function of changing climate in the Pacific Arctic region from the Bering Strait north to the high Arctic. Main gaps: So far unable to go far into the ice for investigation, although the geographical scope of the RUSALCA mission increased in 2009 because of the reduction of sea ice cover. (we were able to reach a northernmost site and to sample as far north as 77°30’N.

Oceanography Atmosphere Ecosystems
5. National Data Buoy Center (NDBC) (NDBC)

To provide real-time marine meteorological, oceanographic and geophysical observations in real-time to the World Meteorological Organization’s Global Telecommunications Service (GTS).

Oceanography Atmosphere Ecosystems
6. Ecosystems and Fisheries-Oceanography Coordinated Investigations (EcoFOCI) (EcoFOCI)

The Bering Sea is an extremely rich ecosystem providing almost half of the US catch of fish and shellfish. EcoFOCI has four moorings (M2, M4, M5 and M8), which are an important component in the observational system, monitoring changes in the ecosystem. Data are used by ecosystem managers, modellers (model validation), and scientists. They provide critical information on the spatial temperature structure, timing of phytoplankton blooms, cold pool and presence of marine mammals. Main gaps: Expanding instrumentation to measure ice thickness, nutrients, oxygen, PAR, zooplankton biovolume and atmospheric variables to all four of the mooring sites. Increase vertical resolution of nutrients. Expand measurements northward into the Chukchi and Beaufort Seas.

Oceanography Atmosphere Human health Ecosystems
7. Alaska Pelagic Seabird Observer Program

Place seabird/marine mammal observers on ships of opportunity – focusing on research vessels and programs such as NOAA stock assessment surveys and NFS-funded programs. To obtain data on seabird/marine mammal distribution and abundance throughout Alaska waters, with corresponding oceanographic and biological data from other projects on the same cruises. Data to be included in syntheses as part of Bering Sea Integrated Ecosystem Research Program (BSIERP, NPRB), and will be added to the N. Pacific Pelagic Seabird Database (NPPSD).

8. Climate and contamination of the western arctic: monitoring change with the Black Guillemot, an apex marine predator

Examine temporal and spatial variation in trace metal concentrations in the western Arctic through the analysis of Black Guillemot feathers. Temporal trends being examined using study skins collected as early as 1897. Spatial variation examined in conjunction with carbon isotope signatures in feathers and by sampling both winter and summer plumages. Regional climate change monitored through examination of annual variation in breeding chronology and success in relation to snow and ice melt.

Heavy metals Climate variability Spatial trends Climate change Ice Arctic Persistent organic pollutants (POPs) Seabirds Temporal trends
9. Persistent organic pollutants measurements in Arctic fox from the Pribilof Islands, Alaska

Objectives were to measure a suite of organochlorine contaminants in tissues of Arctic fox collected on the Pribilof Islands for comparison to similar measurements in Arctic fox from other locations for the AMAP assessment.

Organochlorines PCBs fat Terrestrial mammals Arctic Persistent organic pollutants (POPs) Pesticides Arctic fox
10. The Bowhead whale as a potential indicator species for monitoring the health of the western Arctic/Bering Sea ecosystem using blubber, histology, metal and mineral indices

I. Objectives: I.1. To determine the normal range of values (natural variability due to time of year, age, gender) for basic nutritional and health parameters (blubber characteristics, essential and non-essential elements, structure of basic tissues) in the bowhead whale. a. Blubber thickness (depth and girth), chemical composition (lipids, water, calories), and tissue structure (light microscopy and special stains) will be assessed. b. Essential and non-essential elements (heavy metals) will be measured in liver and kidney. c. Tissue structure (light microscopy) characteristics obviously related to nutritional status in liver (glycogen, lipid and lipofuscin stores), pancreas (zymogen granules), and intestine (mucosal microvilli) and any evidence of inactivity/atrophy will be examined. d. Documentation of "normal" structure of basic tissues and evaluation for evidence of disease will also be conducted. I.2. Using data from Objective 1 to identify the parameters most important in assaying the health status of other mysticetes residing in the Bering Sea or Western Arctic that are harvested or stranded. I.3. Using data from Objective 1 to help determine the role of the bowhead whale as an indicator of ecosystem health and development of an optimized protocol for assessing mysticete health for the Bering Sea and Western Arctic, and other regions.

Biological effects Biology Organochlorines Heavy metals Arctic Persistent organic pollutants (POPs) Ecosystems Marine mammals
11. Trajectories of Marine Ecosystem Response to Arctic Climate Change: A Barents-Bering Sea Comparison

Multi-institutional, international cooperative project to determine the possible responses of Arctic marine communities to future global climate change by comparing retrospective patterns in benthic composition and distributions to past climatic events in the Barents and Bering Seas.

Biological effects Climate variability Spatial trends Contaminant transport Climate change Biodiversity Food webs Temporal trends Ecosystems
12. Polar Exchange at the Sea Surface (POLES)

Our broad area of enquiry is the role of polar regions in the global energy and water cycles, and the atmospheric, oceanic and sea ice processes that determine that role. The primary importance of our investigation is to show how these polar processes relate to global climate.

Atmospheric processes polar cloud dynamics ice dynamics surface radiation and cloud forcing Climate variability Climate Sea ice Climate change surface heat and mass balance polar atmospheric processes ice-ocean models arctic climate Modelling Ice Oceanography Arctic SEARCH Atmosphere Ocean currents cryosphere ice thickness
13. The Role of Polar Oceans in Contemporary Climate Change

Our central geophysical objective is to determine how sea ice and the polar oceans respond to and influence the large-scale circulation of the atmosphere. Our primary technical objective is to determine how best to incorporate satellite measurements in an ice/ocean model.

Atmospheric processes ice dynamics mass balance of Arctic sea ice Geophysics Climate variability Climate Sea ice Climate change freshwater balance of the Arctic Ocean polar atmospheric processes ice-ocean models arctic climate Modelling Ice Oceanography Arctic SEARCH Atmosphere Ocean currents ice thickness
14. Shelf Basin Interactions Program

To understand and model the processes by which Arctic deep water is formed on continental shelves by the modification of inflowing Atlantic and Pacific waters.

Shelf seas Hydrography Modelling Ice Oceanography Arctic SEARCH Data management Atmosphere Ocean currents
15. Polar Ice Prediction System Version 3.0 (PIPS 3)

To develop the next-generation Navy operational ice thickness and movement model.

Shelf seas Hydrography Modelling Ice Oceanography Arctic SEARCH Data management Atmosphere Ocean currents
16. Bering Strait -- A Vital and Variable Forcing of the Western Arctic Shelves, Slopes and Basings

Maintain oceanographic moorings in the Bering Strait to monitor heat and mass flux into the Arctic Ocean; moorings will be augmented by nutrient samplers in 2001.

Currents Transport Salt Bering Strait Oceanography SEARCH
17. Compiling and summarizing Persistent Organic Pollutant (POPs) data from the U.S. Arctic for the Arctic Monitoring & Assessment Programme (AMAP)

Objectives: 1. Locate and assemble scientific data from the U.S. Arctic on the concentrations and effects of POPs in all compartments (e.g., marine and terrestrial biota, abiotic substrates) of the Arctic. 2. Evaluate, analyze and summarize these scientific data from the U.S. Arctic into text suitable for inclusion in a new (second) AMAP publication on POPs. 3. Disseminate the summarized information via a U.S. AMAP Internet page that is directly linked to the current International AMAP Internet page. Summary (Abstract): The Arctic Monitoring and Assessment Programme (AMAP) was established in 1991 and given the responsibility of monitoring the concentrations and assessing the effects of selected anthropogenic pollutants in all compartments of the Arctic. The first AMAP assessment report, published in 1998, points out gaps in our current understanding of contaminant inputs, their transport processes and food web interactions. In addition, the AMAP report noted a serious lack of information about persistent organic pollutants (POPs) in the U.S. and Russian Arctic. Thus, the recommendations of the first AMAP report were to: monitor spatial distribution, contaminant levels and biological effects of POPs; improve the understanding of the adverse effects of POPs on human populations; and fill existing data gaps, specifically in the U.S. and Russia. In this work, we plan to identify sources of scientific information (e.g., published reports, datasets) on POPs in the U.S. Arctic and obtain these data for AMAP. Once data sources are identified, a small group of scientific experts will be assembled for a workshop to determine if any pertinent sources have been overlooked and to give advice on how best to evaluate, analyze, summarize and disseminate the information obtained. A working database will be designed so that the data and scientifically important findings or conclusions from each study can be organized and evaluated. Data will be analyzed statistically, as appropriate, to determine spatial and temporal trends. The data and scientific findings that have been collected and analyzed will then be summarized into text, for inclusion in the next AMAP publication on POPs. This major effort of synthesizing the existing data from the U.S. Arctic will ensure that the AMAP report adequately presents the accomplishments of U.S. scientists and research programs. The written publication and the summarized U.S. POPs data will also be presented as a U.S. AMAP Internet page linked to the International AMAP Internet page.

Persistent organic pollutants (POPs) SEARCH Data management assessment Phase II
18. Biocomplexity in the Bering Sea; multiple stressors and combined effects

Develop conceptual models of biocomplexity for the Bering Sea watershed to describe and predict the combined effects of multiple stressors on key components of the Bering Sea ecosystem.

SEARCH Ecosystems