Barents Sea: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Barents Sea as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 21 - 40 of 41 Next
21. Persistent organic pollutants in marine organisms in the marginal ice zone near Svalbard: Bioconcentration and biomagnification

Due to the high organochlorine concentrations reported in Arctic top predators, and the potential transport of contaminants with the drifting sea-ice in the Arctic, organisms constituting lower trophic levels living in association with sea-ice have been proposed as susceptible of uptake of high loads of organic pollutants. The present project studies the organochlorine occurrence in organisms living in the marginal ice zone north of Svalbard and in the Fram Strait. This includes both ice fauna (ice-amphipods), zooplankton, polar cod and different seabird species foraging in the marginal ice zone. Our objectives are to investigate: *The bioaccumulation of organochlorines in ice-associated amphipods in relation to diet preference, spatial variation due to sea ice drift route, size, sampling year, uptake and distribution within the body. *Comparison of organochlorine contamination in pelagic and ice-associated organisms at the similar trophic position, to investigate the effect of sea ice as a transporter and concentrator of pollutants. *Spatial variation in zooplankton species, related to differences in water masses and exposure to first year or multi year sea ice. *The contamination load in different seabirds feeding in the marginal ice zone, in relation to diet choice and estimated trophic position, taxonomically closeness and the induction of hepatic CYP P450 enzymes.

habitats Biology sea ice drift route Organochlorines PCBs Fish Long-range transport Spatial trends Sea ice Contaminant transport Ice trophic positions Arctic Persistent organic pollutants (POPs) Seabirds Food webs metabolism Pesticides ice-associated organisms Diet zooplankton
22. Monitoring radioactivity in Norwegian waters

Monitoring the levels of radioactivity in water, sediments and biota

Radioactivity Radionuclides
23. Zooplankton-The Barents Sea

Monitoring of zooplankton in the Barents Sea with sections and area coverages.

Food webs zooplankton
24. Monitoring nutrients

As part of plankton and fisheries surveyes samples for nutrients measurements are collected. This is part of our routine monitoring of the marine environment.

25. Fisheggs- and larvae - The Barents Sea

Monitor the abundance of Capelin larvae in the Barents Sea. Report to the Northern pelagic Blue Whiting WG in ICES

26. Monitoring the Atlantic inflow to the Barents Sea

To monitor the inflow of salt and heat to through the Barents Sea to the Arctic Ocean.

Climate variability Climate change
27. Monitoring climate variability in the Barents Sea

This is an ongoing activity for monitoring variability in temperature and salinity in Barents Sea

Climate variability Climate change Oceanography
28. Variation in space and time of cod and other gadoids: the effect of climate and density dependence on population dynamics

To increase the understanding of temporal and spatial dynamics of cod and other commercial gadoid species, including the influence of environmental variability on population parameters, and make this knowledge available in assessable form for fisheries management.

Climate variability Climate change
29. Monitoring the Atlantic Inflow toward the Arctic (MAIA)

The overall objective of MAIA is to develop an inexpensive, reliable system based on coastal sea-level data for monitoring the inflows of Atlantic Water to the northern seas. Available observation systems, including stan-dard tidal stations, will be used to obtain transport estimates with a time resolution of less than a week and show that the method is generic and can be applied to a similar monitoring of other regions.

Long-range transport Climate Sea ice Ice Oceanography Arctic Ocean currents
30. Ellasjøen, Bear Island - A mass balance study of a highly contaminated Arctic area

In 1994, analyses of sediments and fish from Lake Ellasjøen on Bear Island revealed a surprising scenario. The analytical results indicated some of the highest values of the contaminants PCB and DDT in freshwater sediments and fish ever found in the Arctic. The 1994 results were based on limited amounts of samples. During 1996 and 1997 there were carried out new sampling and analyses of several samples. These results verify the results found in 1994. Since the POP-patterns found deviate considerably from the typical patterns expected for local contamination, no local source can be assumed to be responsible for the high POP values found. Thus, the questions that need to be addressed include the source of these contaminants, the transport pathways that deliver these contaminants to this site, total deposition and finally contaminant fate including biological uptake and effects. Previous investigations from the early 80’s on high volume air samples carried out at Bear Island revealed several long-range transport episodes from Eastern Europe. The overall objective of this project is to contribute significant new information to the understanding of contaminant pathways in the Arctic hydrosphere and to provide a better understanding of contaminant focusing in a sensitive polar environment. This will be accomplished through the development of a comprehensive mass balance study of the atmospheric loadings of PCBs and other contaminants to the Lake Ellasjøen watershed to determine the seasonal importance of atmospheric deposition on a remote polar island. Further, effort will be directed at assessing the relative importance of various source regions of contaminants to the island through an evaluation of contaminant signatures and back trajectories of pollution events.

Pathways Organochlorines PCBs Long-range transport Pollution sources Contaminant transport Modelling Arctic Persistent organic pollutants (POPs) Pesticides Atmosphere
31. Transfer of organic pollutants from the abiotic environment to the lowest tropic levels of the ice associated food chain

The aim of the project is to detrmine the content of organic contaminants in sea ice (including dirty ice), sea water (particulate and dissolved), snow, ice algae and phytoplankton collected in the marginal ice zone of the Barents Sea and in Fram Strait, and to calculate bioconcentration factors from the abiotic compartments to the lowest trophic levels of the food chain. Silicate measurements were included in the Fram Strait as water mass tracer. The Barents Sea represents an area influence mainly by first year ice with sea ice formed in the area and or in the Kara Sea, and and strongly influenced by the inflowing two branches of water of Atlantic origin. Samples were collected on a transect along the ice edge and at two transects into the ice. The stations across the Fram Strait were taken in regions affected by water masses and sea ice from differents regions and age. In the western sector, the upper water column was influenced by the inflowing west Spitsbergen current of Atlantic origin and mainly with first-second year ice, while the easter station was influenced by outflowing water from the Arctic Ocean and multiyear sea ice of more eastern origin.

Pathways Organochlorines PCBs PAHs Long-range transport Pollution sources Sea ice Contaminant transport Exposure Arctic Persistent organic pollutants (POPs) Local pollution Ice cores Food webs Pesticides Ecosystems
32. Bear Island - Food chain studies: The key to designing monitoring programmes for Arctic islands

Previous studies (Akvaplan-niva 1994 and 1996) on levels of POPs in limnic systems on Bear Island have shown that sediment and fish from a lake on the southern part of the island (Ellasjøen) have some of the highest levels of PCB and DDT that has been reported from Arctic areas. In a lake situated in the more central part of the island (Øyangen) levels are much lower, and in the same range as reported for lakes in Northern Norway and the Canadian Arctic. No local sources for contamination exist on Bear Island, and it is therefore likely that the contaminants are brought to the island with long-range atmospheric transport. The difference between the two investigated lakes on Bear Island may be due to differences in deposition of precipitation. This theory is currently being investigated through another project called: “Ellasjøen, Bear Island - A mass balance study of a high contaminated Arctic area." Another possible sources for contaminants to Ellasjøen can be the large colonies of seabirds that are situated close to the lake or use the lake for bathing. These seabirds may accumulate contaminants through their marine food chains and deposit guano in Ellasjøen and surrounding areas. Øyangen is much less influenced by seabirds than Ellasjøen. The aim of the present project is to map levels of selected persistent organic pollutants and study their biomagnification in freshwater and marine food chains at/near Bear Island. By linking the results from freshwater and marine food chains we aim to elucidate whether trophodynamics and interaction between marine and terrestrial food chains can be a natural mechanisms for biomagnification of POPs in specific geographic areas.

Organochlorines PCBs Fish Persistent organic pollutants (POPs) Seabirds Food webs Pesticides
33. Effects of metals and POPs on marine fish species

To clarify whether metals and/or POPs affect marine fish species - Atlantic cod (Gadus morhua) and plaice (Pleuronectes platessa)

Biological effects PAH-metabolites Organochlorines Pleuronectes platessa Heavy metals Fish EROD PAHs Long-range transport Gadus morhua ALA-D metallothionein
34. Radionuklide in Fischen eingangs zur Barentssee : Radionuclides in fishes at the beginning of the Barents Sea

Our projects will investigate the effects of radioactive wastes on marine ecosystems. Two marine ecosystems have been chosen for projects: 1) the dumping site for low level radioactive waste in the north-east Atlantic and 2) the western part of the Barents Sea. The data on the radioecology of North Sea and Baltic Sea obtained in our long-time monitoring programmes will serve as a basis for the interpretation of the project´s results.

Fish Radioactivity Modelling Arctic Temporal trends
35. Endocrine disruption in arctic marine mammals

Assess the effects of POP mixtures present in the food on the endocrine system of marine mammals. Effects of these mixtures on steroid synthesis in adrenals and gonads will be studied in vitro. Further, hormone mimicking effects of contaminant mixtures will be studied. Contaminant receptor binding and responses of the contaminant-receptor complex are studied using estrogen/androgen receptor binding assays in combination with reporte gene assays.

Biological effects Arctic Persistent organic pollutants (POPs) Marine mammals
36. The influence of body lipid status on PCB toxicokinetics in the anadromous Arctic charr (Salvelinus alpinus)

The objective is to study the relationship between natural seasonal variations in body lipid status of sea migrating Arctic charr and disposition (e.g. tissue distribution)of PCB, particularly in relation to the toxical potential of a certain body burden of PCB.

Biological effects Toxicokinetics Organochlorines PCBs Fish
37. Trajectories of Marine Ecosystem Response to Arctic Climate Change: A Barents-Bering Sea Comparison

Multi-institutional, international cooperative project to determine the possible responses of Arctic marine communities to future global climate change by comparing retrospective patterns in benthic composition and distributions to past climatic events in the Barents and Bering Seas.

Biological effects Climate variability Spatial trends Contaminant transport Climate change Biodiversity Food webs Temporal trends Ecosystems
38. Polar Exchange at the Sea Surface (POLES)

Our broad area of enquiry is the role of polar regions in the global energy and water cycles, and the atmospheric, oceanic and sea ice processes that determine that role. The primary importance of our investigation is to show how these polar processes relate to global climate.

Atmospheric processes polar cloud dynamics ice dynamics surface radiation and cloud forcing Climate variability Climate Sea ice Climate change surface heat and mass balance polar atmospheric processes ice-ocean models arctic climate Modelling Ice Oceanography Arctic SEARCH Atmosphere Ocean currents cryosphere ice thickness
39. The Role of Polar Oceans in Contemporary Climate Change

Our central geophysical objective is to determine how sea ice and the polar oceans respond to and influence the large-scale circulation of the atmosphere. Our primary technical objective is to determine how best to incorporate satellite measurements in an ice/ocean model.

Atmospheric processes ice dynamics mass balance of Arctic sea ice Geophysics Climate variability Climate Sea ice Climate change freshwater balance of the Arctic Ocean polar atmospheric processes ice-ocean models arctic climate Modelling Ice Oceanography Arctic SEARCH Atmosphere Ocean currents ice thickness
40. Polar Ice Prediction System Version 3.0 (PIPS 3)

To develop the next-generation Navy operational ice thickness and movement model.

Shelf seas Hydrography Modelling Ice Oceanography Arctic SEARCH Data management Atmosphere Ocean currents