Barents Sea: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Barents Sea as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 20 of 41 Next
1. Monitoring of broadband longwave and shortwave radiance at METNO Arctic stations

    These observations was originally funded through IPY projects (iAOOS-Norway and IPYTHORPEX), they are now maintained by the Norwegian Meteorological Institute. The observations at Bjørnøya started April 2008, Jan Mayen October 2008 and Hopen is scheduled 2009.

    Objectives are:

    1. Provision of algorithm tuning and validation data for EUMETSAT OSISAF radiative fluxes products (
    2. Provision of validation data for numerical weather prediction models.
    3. Generation of time series for use in time series analysis of atmospheric radiative conditions.
    4. Validation data for studying ocean and atmosphere heat exchange processes using bulk parameterisations.
    2. Monitoring of fish and seafood

    Monitor the levels of radionuclides (137Cs and 210Po) in selected fish and seafood species in the Norwegian and Barents Sea.

    137Cs 99Tc and 210Po Environmental management Fish Human health Radioactivity Radionuclides shellfish
    3. Restoration of the salmon stock in the Tuloma river system

    The possibility of restoring the salmon stocks in the Tuloma system is assessed by collecting background information on the river system: present fish fauna, habitat quality, migratory routes etc. Planning the restoration including technical and management aspects is under way.

    Biological effects Biology Populations Hydrography Catchment studies Fish Indigenous people Acidification Spatial trends Modelling Biodiversity Arctic Reproduction Diet Temporal trends Ecosystems
    4. Ecogeochemical mapping of the eastern Barents Region (Barents Ecogeochemistry)

    Geochemical mapping project based on multimaterial and -elemental method covering the NW Russia and adjacent areas of Finland and Norway. NW-Russia is of strategic importance not only for Europe but also for the sosio-economic development of the whole Russia for its richness in natural resources. Their use must be based on environmentally acceptable principles. In addition, within the area exist numerous industrial centres whose environmental impacts are unknown. The information produced by the project is significant for the future development of the area and remedial measures of the environment. The project lead by the applicant, will be carried out in 1999-2003 in cooperation with Russian and Norwegian partners.

    Geology PCBs Soils Catchment studies Mapping Heavy metals Radioactivity PAHs Long-range transport Acidification Pollution sources Contaminant transport Mining Radionuclides Arctic Local pollution GIS Geochemistry Dioxins/furans Data management Sediments
    5. Monitoring of the Atlantic salmon stocks of the Teno (Tana) and Näätämö (Neidenelva) river systems, northernmost Fennoscandia.

    Monitoring of the salmon stocksof the Teno and Näätämö river systems is based on long term data collection on juvenile salmon production, biological characteristics of the spawning stock, origin of salmon (wild/reared) and statistics on fishery and catches. Information on other fish species than salmon is also available.

    Biological effects Biology Populations Hydrography Catchment studies Fish Indigenous people Acidification Spatial trends Modelling Biodiversity Arctic Reproduction Diet Temporal trends Ecosystems
    6. Arctic Oceanographic Observations (AREX) (AREX)

    Since 1988 the regular summer hydrographic observations in the Nordic Seas and Fram Strait have been collected by the Institute of Oceanology Polish Academy of Sciences (IOPAS). Observational activities were carried out under several national programs, in the frames of EU projects VEINS, ASOF-N and DAMOCLES and within Polish-Norwegian cooperation in the AWAKE project. The main objectives are:  to study the long-term variability of water mass distribution, their physical and chemical properties and different pathways in the Nordic Seas;  to investigate the Atlantic water (AW) circulation in the Nordic Seas and its inflow into the Arctic Ocean;  to recognize the possible feedbacks between the Atlantic water variability and local and global climate changes.

    Hydrography Oceanography
    7. Monitoring of commercial fish stocks in the Barents Sea

    This is a cooperation between Institute of Marine Research (IMR) in Norway (contact person Ingolf Røttingen, and Polar Research Institute of Marine Fisheries and Oceanography (PINRO) in Russia. Main objective of the network: - Determine amount and distribution of commercial fish stocks - Describe abundance of biodiversity (benthos, fish, whale, zooplankton, phytoplankton, shellfish) - Determine annual variation in commercial fish biomass and feeding conditions for these fish species. Location: Southern and central Barents Sea – mainly in Norwegian sector. When operational: Area surveys are conducted throughout the year. The number of vessels in each survey differs, not only between surveys but may also change from year to year for the same survey. However, most surveys are conducted with only one vessel. It is not possible to measure all ecosystem components during each survey. Effort is always put on measuring as many species as possible on each survey, but available time put restrictions on what is possible to accomplish. Also, an investigation should not take too long time in order to give a synoptic picture of the conditions. Therefore the surveys must focus on a specific set of species. Other measured species may therefore not have optimal coverage and thereby increased uncertainty, but will still give important information. An overview of the measured species on each main survey is given in the table above. Operation: Observations are taken by IMR from research vessels. The programme is carried out in cooperation with Russia (PINRO) coordinated under the Joint Norway-Russia Fisheries Commission. Assessment of commercial stocks are conducted through ICES. Geographical coverage: Norwegian EEZ of Barents Sea including waters around Svalbard. The joint programme with Russia covers much of the Barents Sea (southern, central, and much of northern part in fall). Network type: Surveys, annual stock assessments

    8. Monitoring of zooplankton biomass and composition in the Barents Sea

    This is a cooperation between Institute of Marine Research (IMR) in Norway (contact person Tor Knutsen, ) and Polar Research Institute of Marine Fisheries and Oceanography (PINRO) in Russia. Main objective of the network: 1. Determine amount and distribution of zooplankton biomass (in three size fractions). 2. Describe abundance of dominant zooplankton species. 3. Determine annual variation in zooplankton biomass and feeding conditions of planktonfeeding fishes. Operation: Observations are taken by IMR from research vessels. The programme is carried out in cooperation with Russia (PINRO).

    9. Monitoring of ocean climate of the Barents Sea

    This is a cooperation between Institute of Marine Research (IMR) in Norway (Contact person Randi Ingvaldsen, and Polar Research Institute of Marine Fisheries and Oceanography (PINRO) in Russia. Main objective of the network: 1. Describe water mass distribution and properties 2. Document ocean climate variability as part of long time series 3. Relate ocean climate variability to variation in recruitment, growth, condition and size of commercial fish stocks Observations are taken by IMR from research vessels. The programme is carried out in cooperation with Russia (PINRO) coordinated under the Joint Norway-Russia Fisheries Commission. The current meter moorings are shifted once a year.

    10. Coordinated Environmental Monitoring Programme (CEMP) (CEMP)

    To assess the effects, levels and trends of hazardous substances in marine sediment and biota. The indicator organisms include blue mussel, dogwhelk, cod and plaice. The monitoring sites are mostly coastal and the frequency of sampling is mostly annually for biota and every 10-15 years for sediment. Main gaps: Protected areas and offshore monitoring are generally not included under the CEMP but offshore monitoring is somewhat covered by. IMR/NIFES programmes. Not all substances under EU’s Water Frame Work Directive and Marine Strategy Directive are monitored regularly. Biological effects monitoring is lacking except for IMPOSEX investigations.

    11. Contaminants in Polar Regions – Dynamic Range of Contaminants in Polar Marine Ecosystems (COPOL)

    The IPY-project ‘COPOL’ has a main objective of understanding the dynamic range of man-made contaminants in marine ecosystems of polar regions, in order to better predict how possible future climate change will be reflected in levels and effects at higher trophic levels. This aim will be addressed by 4 integrated work packages covering the scopes of 1) food web contaminant exposure and flux, 2) transfer to higher trophic levels and potential effects, 3) chemical analyses and screening, 4) synthesis and integration. To study the relations between climate and environmental contaminants within a project period of four years, a “location-substitutes-time”-approach will be employed. The sampling is focussed towards specific areas in the Arctic, representing different climatic conditions. Two areas that are influenced differently by different water masses are chosen; the Kongsfjord on the West-coast of Spitzbergen (79N, 12 E) and the Rijpfjord North-East of Svalbard (80N, 22 E). The main effort is concentrated in the Kongsfjord. This fjord has been identified as particularly suitable as a study site of contaminants processes, due to the remoteness of sources, and for influences of climatic changes, due to the documented relation between Atlantic water influx and the climatic index North Atlantic Oscillation (NAO). The water masses of the Rijpfjord have Arctic origin and serves as a strictly Arctic reference. Variable Atlantic water influx will not only influence abiotic contaminant exposure, but also food web structure, food quality and energy pathways, as different water masses carry different phyto- and zooplankton assemblages. This may affect the flux of contaminants through the food web to high trophic level predators such as seabirds and seals, due to altered food quality and energy pathways.

    Biological effects Organochlorines Heavy metals Fish Climate variability Long-range transport Climate Contaminant transport Climate change Exposure Arctic Persistent organic pollutants (POPs) Local pollution Seabirds Food webs Ecosystems
    12. Marine food webs as vector of human patogens

    Marine foodwebs as vector and possibly source of viruses and bacteria patogenic to humans shall be investigated in a compartive north-south study. Effects of sewage from ships traffic and urban settlements, on animals of arctic foodwebs will be studied.

    Pathways Biological effects Hydrography Fish Discharges Pollution sources Environmental management Contaminant transport Terrestrial mammals Shipping Polar bear Exposure Arctic Local pollution Seabirds Shellfish Food webs Waste Human health Human intake Marine mammals
    13. Long-term effects of offshore discharges on cold water zooplankton: establishing a test system for chronic exposure to offshore discharges

    During the last decade the concern regarding environmental effects of the offshore industry has shifted from effects of drilling discharges on benthic communities, towards a stronger focus on the water column and effects on the pelagic ecosystem. At the same time, oil and gas development is expanding in the Norwegian and Russian sectors of the Barents Sea. In this regard, a project has been initiated to look at responses of especially Calanus spp. and other copepod species to long-term, sublethal exposure to selected offshore discharges and discharge components, as well as accidental oil spills. Calanus spp. is ecologically the most important zooplankton species along the Norwegian shelf and in the Barents Sea. A laboratory based facility for culture through several generations is being developed through this project. In addition, the impact of oil compounds on the cold-water and arctic Calanus species-complex will be examined by carrying out a series of laboratory (some at Ny Ålesund) and ship based experiments. The response parameters will include both behavioral (feeding, mate finding, avoidance) and physiological (mortality, egg production, development rates, oxygen consumption and assimilation efficiency) parameters. The ultimate outcome of this research is expected to be a supporting instrument for ecological risk assessment of offshore discharges, which is highly relevant both to the North Sea, the mid-Norway shelf and the Barents Sea.

    Pathways Biological effects Biology PAHs Pollution sources Environmental management Contaminant transport Petroleum hydrocarbons Exposure Arctic Oil and Gas
    14. Environmental effects of offshore oil activities: experimental tests of petroleum-associated components on benthos at community, individual, and cellular levels

    This project will examine benthic processes in arctic and mid-latitude regions in order to derive specific conclusions on the sensitivity of benthic organisms and communities to acute spills of petroleum-related chemicals and routine releases of drill cuttings. We will carry out a series of controlled experiments on whole sediment communities and individual benthic organisms with additions of drill cuttings and petroleum-associated contaminants, arriving at a set of hypotheses on the likely impacts on the benthos of petroleum production activities at higher latitudes. A series of testable hypotheses will be formulated based on an examination of real-world monitoring data sets collected under Norway’s Petroleum Regional Monitoring Programme and results of mesocosm experiments performed previously at the Norwegian Institute for Water Research (NIVA) Station at Solbergstrand. These data sets will be examined in order to identify the geographic scope of responses to petroleum industrial activities. Through this work, we intend to propose procedures to improve the interpretation of benthic monitoring data for diverse environmental regions in Norway. The project is linked to several on-going NFR projects within the Polarklima programme. By involving a Ph.D. student the project will advance the education and training of young scientists in the field of biological effects studies related to petroleum development and exploration activities.

    Biological effects PAHs Petroleum hydrocarbons Arctic Sediments Oil and Gas
    15. Living in a spatially structured environment: evolutionary ecology of seabird-parasite interactions

    The aim of this research program is to examine the response of animal populations to environmental variability at different spatial scales. We attempt to determine how individuals respond to the spatial heterogeneity of their environment, and what are the consequences of this response for the dynamics of subdivided populations. Specifically, we consider an ecological system involving biotic interactions at three levels: seabirds, their tick _Ixodes uriae_, and the microparasite _Borrelia burgdorferi_ sensu lato (Lyme disease agent). Colonies of seabirds represent discrete entities, within and among which parasites can circulate. Our previous work on this system in the norwegian arctic has enable us to show that (1) host dispersal can be affected by local conditions, (2) seabird tick populations are specialised among different host species, namely between sympatric kittiwakes _Rissa tridactyla_ and puffins _Fratercula arctica_, (3) in the kittiwake, females transmit antibodies against _Borrelia burgdorferi_ when their chicks have a high probability to be exposed to the tick vector. We propose to combine different approaches, incorporating field surveys and experiments and population genetic studies (of hosts and parasites), in order to better understand the role of local interactions and dispersal in the dynamics of such a system. The research program implies collaborations with researchers from other french groups, as well as with Canadian (Queen’s University) and Norwegian colleagues (from NINA and the University of Tromsø).

    Biology Populations Epidemiology Evolutionary ecology Spatial trends Biodiversity Seabirds Ecosystems
    16. RADNOR - Radioactive dose assessment improvements for the Nordic marine environment: Transport and environmental impact of technetium 99 (99Tc) in marine ecosystems

    Radioactivity in the Arctic environment is a central topic within environmental pollution issues. Increased discharges of technetium-99 (99Tc) from the nuclear fuel reprocessing plant Sellafield to the Irish Sea has caused public concerns in Norway. This project (acronym “RADNOR”) includes model and monitoring assessments and improvements, assessment of current and novel abiotic and biotic dose parameters and dose calculations and use of realistic climatic background scenarios in order to assess corresponding consequences for transport of radioactive pollutants. RADNOR consists of three main components: part 1, the determination of levels and time series of 99Tc in benthic and pelagic food webs; part 2, containing working packages on improvements to the understanding of site-specific and time-dependent sediment-water interactions (KD), kinetics of accumulation (CF) and body distribution in marine organisms, including contaminated products for the alginate industry and part 3, dealing with model hindcasts and observations for spreading of 99Tc from the Sellafield nuclear reprocessing plant during the 1990s and improvement of the NRPA dose assessment box model. From the model outputs, doses to man and environment will be calculated resulting in a valuable database for use within environmental management and for decision makers.

    distribution coefficients (KD) RADNOR Long-range transport Spatial trends Contaminant transport concentration factors (CF) Radionuclides Modelling Oceanography Arctic Food webs Sediments Temporal trends Human intake Technetium 99
    17. An integrated assessment of environmental and socio-economic aspects for the coastal zone of the sub-arctic White Sea and Arctic Pechora Sea

    The aim of the study is to make a first integrated assessment of environmental and socio-economic aspects of the northern Russian coastal region, in this case the sub-Arctic White Sea and Arctic Pechora Sea, on the basis of 1) the present state of the coastal environment, as based on the results of INTAS project 94-391, and 2) the sociocultural and economic significance of those regions, and the present and potential conflict situations between, and developmental potentials of, environmental and local socio-economic aspects. Research activities: Inventory and literature search on socio-economic and environmental aspects in White Sea, southern Barents Sea and Pechora Sea.

    Indigenous people Environmental management socio-economics development
    18. Biodiversity and adaptation strategies of Arctic coastal marine benthos

    The objectives of the project are to assess: 1) the present biodiversity of benthos in Arctic coastal ecosystems (White Sea, southern Barents Sea, Pechora Sea), and indicators for changes caused by disturbances; 2) the adaptations to the Arctic climate for some benthic key-species, the additional influence of disturbance and the sensitivity of the key-species to additional stress from disturbances; 3) the geochemical background of the regions Research activities: Annual missions by ship for sampling water, sediments and macrobenthos. Biodiversity analysis of macrobenthos in sediments in laboratories in Murmansk (MMBI) and Tromsø (Akvaplan-Niva), ecophysiological analyses in laboratories of St. Petersburg (ZISP), Yerseke (NIOO-CEMO) and Pisa (UN), analyses of pollutants in laboratories in Moscow (MSU), Nantes(UN) and Pisa (UP), geochemical analyses of water and sediment in laboratories of Moscow (MSU) and Barcelona (UB). Training of 3 PhD students

    key species Biological effects Biology Populations indicators Heavy metals Climate variability Climate change Biodiversity Sediments Ecosystems genetics benthos
    19. Barents Sea Marine Ecosystem

    This study aims at reconstructing the Barents Sea marine ecosystem before the exploitation by man. This reconstruction will be made by using the existing archival resources on catch statistics from the 17th to 19th centuries in the Netherlands, Germany, Denmark and the United Kingdom, in combination with the present knowledge an animal behaviour and food web structure. Fieldwork is planned in two former hunting areas in Spitsbergen: the Smeerenburgfjord and the Storfjord to study both the structure of the recent marine ecosystem and the composition, size and dating of the recent bird rookeries. This information in combination with the historical data will be used to reconstruct the original ecosystem.

    whaling Biology Populations Biodiversity Seabirds Food webs Ecosystems Marine mammals
    20. Effects of Persistent Organic Pollutants (POPs) on the Immune Response of Glaucous Gull (Larus hyperboreus)

    The present project includes one pilot study of wild adult glaucous gull (Larus hyperboreus) and one experimental study of glaucous gull chicks raised in captivity. The pilot study of adult gulls gave us enough blood and tissue samples to develop the methods needed for immune system analysis in the laboratory experiment. In the experimental study a total of 39 glaucous gull chicks were hatched and raised in captivity in Svalbard, Norway. The chicks were divided into two groups. One experimental group (20 chicks) was given food that mimicked the “natural” food found in the marine environment. The control group (19 chicks) was given “clean” food. After 56 days the chicks were sacrificed in order to collect samples for analyses of organochlorines (OCs) and immunocompetence measurements. The experimental group had 2.8, 3.9, 5.0, and 6.1 time’s higher concentrations of HCB, Oxychlordane, ?DDT, and ?PCB, respectively, compared to the control group at day 56. All chicks used in the experiment were immunised with various vaccines and sera in order to test their ability to respond against foreign antigens. The experimental chicks produced low levels of virus neutralising antibodies when tested against the herpes virus and reovirus. They produced higher levels of neutralising antibodies when tested to tetanus toxoid. There was, however, no difference between the experimental groups with regard to the mean antibody titres. The chicks in both groups also responded to the influenza virus by increasing the production of specific antibodies. However, the mean antibody titre in the exposed group was significantly lower than in the control group. The mitogen-induced response of blood lymphocytes to PHA and LPS was significantly higher in the exposed group compared to the control group. The specific response of blood lymphocytes to Con A, PWM, KLH, TET, and PPD was higher in the exposed group compared to the control group. However, do to high variance in the exposed group there was no significant difference between groups with regard to the lymphocyte response to these mitogens. The results from the present study indicate a toxic effect of OCs on the glaucous gull chicks, which induced a systematic activation of the immune system. Further work on data will be performed.

    effects Biological effects Organochlorines PCBs Fish Long-range transport glaucous gull Persistent organic pollutants (POPs) Seabirds immune system Pesticides