Arctic Ocean: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Arctic Ocean as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 9 of 9
1. Restoration of the salmon stock in the Tuloma river system

The possibility of restoring the salmon stocks in the Tuloma system is assessed by collecting background information on the river system: present fish fauna, habitat quality, migratory routes etc. Planning the restoration including technical and management aspects is under way.

Biological effects Biology Populations Hydrography Catchment studies Fish Indigenous people Acidification Spatial trends Modelling Biodiversity Arctic Reproduction Diet Temporal trends Ecosystems
2. Monitoring of the Atlantic salmon stocks of the Teno (Tana) and Näätämö (Neidenelva) river systems, northernmost Fennoscandia.

Monitoring of the salmon stocksof the Teno and Näätämö river systems is based on long term data collection on juvenile salmon production, biological characteristics of the spawning stock, origin of salmon (wild/reared) and statistics on fishery and catches. Information on other fish species than salmon is also available.

Biological effects Biology Populations Hydrography Catchment studies Fish Indigenous people Acidification Spatial trends Modelling Biodiversity Arctic Reproduction Diet Temporal trends Ecosystems
3. Long-term effects of offshore discharges on cold water zooplankton: establishing a test system for chronic exposure to offshore discharges

During the last decade the concern regarding environmental effects of the offshore industry has shifted from effects of drilling discharges on benthic communities, towards a stronger focus on the water column and effects on the pelagic ecosystem. At the same time, oil and gas development is expanding in the Norwegian and Russian sectors of the Barents Sea. In this regard, a project has been initiated to look at responses of especially Calanus spp. and other copepod species to long-term, sublethal exposure to selected offshore discharges and discharge components, as well as accidental oil spills. Calanus spp. is ecologically the most important zooplankton species along the Norwegian shelf and in the Barents Sea. A laboratory based facility for culture through several generations is being developed through this project. In addition, the impact of oil compounds on the cold-water and arctic Calanus species-complex will be examined by carrying out a series of laboratory (some at Ny Ålesund) and ship based experiments. The response parameters will include both behavioral (feeding, mate finding, avoidance) and physiological (mortality, egg production, development rates, oxygen consumption and assimilation efficiency) parameters. The ultimate outcome of this research is expected to be a supporting instrument for ecological risk assessment of offshore discharges, which is highly relevant both to the North Sea, the mid-Norway shelf and the Barents Sea.

Pathways Biological effects Biology PAHs Pollution sources Environmental management Contaminant transport Petroleum hydrocarbons Exposure Arctic Oil and Gas
4. Long distance pollen transport in the Arctic: 1. Greenland

The submitted proposal aims to perform the monitoring of the pollen rain in the Greenland atmosphere by distinguishing the local pollen production, relatively low, from pollen grains originating from other Arctic areas. A regular monitoring of the atmospheric pollen content must be performed in order to evaluate the amount emitted and characterise the seasonality of the emission. A comparison with air mass trajectories must allow the modelling of long distance transport

Biology Climate variability Spatial trends Modelling Biodiversity Data management pollen Atmosphere Ecosystems
5. Relative importance of different sources of particulate matter in the Kongsfjorden environment

The general objective of this research concerns the quantitative and qualitative study of particulate matter retained in natural (sea-ice and sediment) and artificial (sediment traps) traps in order to determine the main origin (autochtonous and allochtonous) and the relative importance of different fractions of particulate matter and to follow their fate in the environment. To quantify the autochtonous origin of particulate matter, primary production, nutrient uptake, biomass distribution, phytoplankton community structure and fluxes in the first levels of the trophic chain will be investigated. Studies will be conducted in the sea-ice environment and in the water column and compared to the particle fluxes measured both in the water, using sediment traps and in the sediment, by radiometric chronology, in order to estimate the different contribution of these habitats to carbon export to the bottom. The zooplankton will be identified and counted and primary production, nutrient uptake and phytoplankton dynamics will be related to hydrological structure and nutrient availability in the environment. The Kongsfjord results particularly suitable for the main objective of this research as it is influenced by important inputs of both atmospheric (eolic and meteroric) and glacial origin and is characterised by a complex hydrological situation which may promote autochtonous productive processes, thus determining important particulate fluxes.

athmospheric carbon dioxide Biological effects Biology Arctic haze Hydrography inorganic and organic nutrients particulate Sea ice Ice Oceanography Biodiversity Arctic Ice cores Data management Atmosphere Ocean currents phytoplankton sediment radiometric chronology zooplankton
6. The Arctic sea ice ecosystem in recent environmental changes

Biological materials obtained in the central Arctic Ocean at the FSU “North Pole stations” in 1975-1981 have shown that the multi-year ice and ice/water interface is of rich and diverse biotop inhabited by the large number of diatoms and invertebrate animals. Two main matter fluxes in the sea ice ecosystem may be distinguished: (1) the inflow of biogenous elements from water into the ice interior where they are assimilated by the microflora during photosynthesis (summer stage), and (2) the outflow – from ice to water - of the organic matter accumulated in the summer due to photosynthesis (winter stage). Accumulation of organic matter within the sea ice interior during the process of photosynthesis may be considered as an energy depot for organisms of the whole trophic network of the arctic sea ice ecosystem. Recent data from the SHEBA Ice Camp drifted within the Beaufort Gyre 1997-1998 have shown that: (1) sea ice diatoms are very scarce by species and numbers; (2) fresh water green algae are dominated by numbers and distributed within the whole sea ice thickness; (3) invertebrate animals within the sea ice interior are not indicated; (4) invertebrate animals from the ice/water interface are scarce by species and numbers; (5) concentrations of chlorophyll and nutrients in the sea ice are significantly lower of the average concentrations measured before in this region for the same period of time. Remarkable accumulation of the organic mater within the sea ice interior were not indicated.

Biological effects taxonomy Biology Sea ice Climate change Arctic Ocean Ice Biodiversity Arctic production sea ice biota
7. Greenland Right Whale

The ecology of the Greenland Right Whale is studied using the historical information from written sources from Dutch archives. The Spitsbergen and Davis Strait populations of the Greenland Right Whale were so heavily hunted that they are almost exterminated now in the northern waters. The whale bones on the beaches of Arctic islands are the archaeological evidences of this exhausting hunt. Very often whaling logbooks, crew statements and lists of catch figures are the only sources of information preserved of this animal in these regions. In this project recent biological information of the animal in the seas around Alaska and historical information of the whale in the North Atlantic and Davis Strait is used to reconstruct the migration, distribution and ecological behaviour of the Greenland Right Whale in the North Atlantic Ocean.

whaling Biology whales Populations Biodiversity Marine mammals
8. The Bowhead whale as a potential indicator species for monitoring the health of the western Arctic/Bering Sea ecosystem using blubber, histology, metal and mineral indices

I. Objectives: I.1. To determine the normal range of values (natural variability due to time of year, age, gender) for basic nutritional and health parameters (blubber characteristics, essential and non-essential elements, structure of basic tissues) in the bowhead whale. a. Blubber thickness (depth and girth), chemical composition (lipids, water, calories), and tissue structure (light microscopy and special stains) will be assessed. b. Essential and non-essential elements (heavy metals) will be measured in liver and kidney. c. Tissue structure (light microscopy) characteristics obviously related to nutritional status in liver (glycogen, lipid and lipofuscin stores), pancreas (zymogen granules), and intestine (mucosal microvilli) and any evidence of inactivity/atrophy will be examined. d. Documentation of "normal" structure of basic tissues and evaluation for evidence of disease will also be conducted. I.2. Using data from Objective 1 to identify the parameters most important in assaying the health status of other mysticetes residing in the Bering Sea or Western Arctic that are harvested or stranded. I.3. Using data from Objective 1 to help determine the role of the bowhead whale as an indicator of ecosystem health and development of an optimized protocol for assessing mysticete health for the Bering Sea and Western Arctic, and other regions.

Biological effects Biology Organochlorines Heavy metals Arctic Persistent organic pollutants (POPs) Ecosystems Marine mammals
9. Human and chemical ecology of Arctic pathways by marine pollutants

1. Research area # 2 in the 1998/99 Announcement of Opportunity by CIFAR, "Study of anthropogenic influences on the Western Arctic/Bering Sea Ecosystem", and 2. Research area #4 in the 1998/99 Announcement of Opportunity by CIFAR, "Contaminant inputs, fate and effects on the ecosystem" specifically addressing objectives a-c, except "effects." a. "Determine pathways/linkages of contaminant accumulation in species that are consumed by top predators, including humans, and determine sub-regional differences in contaminant levels..." b. "Use an ecosystems approach to determine the effects of contaminants on food web and biomagnification." c. "Encourage local community participation in planning and implementing research strategies." The objectives of Phase I, Human Ecology Research are to: 1. Document reliance by indigenous arctic marine communities in Canada, Alaska and Russia on arctic resources at risk from chemical pollutants; and, 2. Incorporate traditional knowledge systems of subsistence harvesting. The human ecology components of the project were conducted within the frameworks of indigenous environmental knowledge and community participation. Using participatory mapping techniques, semi-structured interviews and the direct participation of community members in research design, data collection and implementation, research and data collection on the human ecology of indigenous arctic marine communities was undertaken in the communities of Holman, NWT (1998), Wainwright, Alaska (1999), and is underway in Novoe Chaplino, Russia. (2000).

Biology Organochlorines PCBs Fish Indigenous people Contaminant transport Stable isotopes Exposure Arctic Persistent organic pollutants (POPs) Food webs Ecosystems Marine mammals